BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34974002)

  • 1. Use of iron-coated sand for removing soluble phosphorus from drainage water.
    Chardon WJ; Groenenberg JE; Vink JPM; Voegelin A; Koopmans GF
    Sci Total Environ; 2022 Apr; 815():152738. PubMed ID: 34974002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing phosphorus loading of surface water using iron-coated sand.
    Groenenberg JE; Chardon WJ; Koopmans GF
    J Environ Qual; 2013; 42(1):250-9. PubMed ID: 23673760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus adsorption on iron-coated sand under reducing conditions.
    Barcala V; Jansen S; Gerritse J; Mangold S; Voegelin A; Behrends T
    J Environ Qual; 2023 Jan; 52(1):74-87. PubMed ID: 36368314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport-limited kinetics of phosphate retention on iron-coated sand and practical implications.
    Barcala V; Zech A; Osté L; Behrends T
    J Contam Hydrol; 2023 Apr; 255():104160. PubMed ID: 36822030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters.
    Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S
    Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dissolution of phosphorus associated with iron-oxides during saturation in agricultural soil profiles.
    Smith GJ; McDowell RW; Condron LM; Daly K; Ó hUallacháin D; Fenton O
    J Environ Qual; 2021 Sep; 50(5):1207-1219. PubMed ID: 34155644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption and desorption of arsenic to ferrihydrite in a sand filter.
    Jessen S; Larsen F; Koch CB; Arvin E
    Environ Sci Technol; 2005 Oct; 39(20):8045-51. PubMed ID: 16295873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus.
    Koopmans GF; Hiemstra T; Vaseur C; Chardon WJ; Voegelin A; Groenenberg JE
    Sci Total Environ; 2020 Apr; 711():135220. PubMed ID: 31831238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility and redox transformation of arsenic during treatment of artificially recharged groundwater for drinking water production.
    Ahmad A; Heijnen L; de Waal L; Battaglia-Brunet F; Oorthuizen W; Pieterse B; Bhattacharya P; van der Wal A
    Water Res; 2020 Jul; 178():115826. PubMed ID: 32361349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought.
    Mosley LM; Fitzpatrick RW; Palmer D; Leyden E; Shand P
    Sci Total Environ; 2014 Jul; 485-486():281-291. PubMed ID: 24727046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of reactive materials to bind phosphorus.
    Chardon WJ; Groenenberg JE; Temminghoff EJ; Koopmans GF
    J Environ Qual; 2012; 41(3):636-46. PubMed ID: 22565245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese and iron oxides on pipe surface promote dissolved aluminum accumulation in drinking water distribution systems.
    Li G; Chen Q; Zhou Y; Su Y; Wu B; Yu J; Yang M; Shi B
    Sci Total Environ; 2024 May; 924():171606. PubMed ID: 38492600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions.
    Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C
    Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal/metalloid and phosphorus characteristics in porewater associated with manganese geochemistry: A case study in the Jiulong River Estuary, China.
    Pan F; Liu H; Guo Z; Cai Y; Fu Y; Wu J; Wang B; Gao A
    Environ Pollut; 2019 Dec; 255(Pt 1):113134. PubMed ID: 31520910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of phosphate on iron-coated sand granules as a robust end-of-pipe purification strategy in the horticulture sector.
    Lambert N; Van Aken P; Van den Broeck R; Dewil R
    Chemosphere; 2021 Mar; 267():129276. PubMed ID: 33341730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying sulfidization and non-sulfidization in long-term in-situ microbial colonized As(V)-ferrihydrite coated sand columns: Insights into As mobility.
    Zhang D; Ke T; Xiu W; Ren C; Chen G; Lloyd JR; Bassil NM; Richards LA; Polya DA; Wang G; Guo H
    Sci Total Environ; 2023 Feb; 858(Pt 3):160066. PubMed ID: 36356776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.