These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34974227)

  • 1. Assessment of nanoparticle immersion depth at liquid interfaces from chemically equivalent macroscopic surfaces.
    Smits J; Prasad Giri R; Shen C; Mendonça D; Murphy B; Huber P; Rezwan K; Maas M
    J Colloid Interface Sci; 2022 Apr; 611():670-683. PubMed ID: 34974227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roughness assessment and wetting behavior of fluorocarbon surfaces.
    Terriza A; Álvarez R; Borrás A; Cotrino J; Yubero F; González-Elipe AR
    J Colloid Interface Sci; 2012 Jun; 376(1):274-82. PubMed ID: 22483335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability of silicone-hydrogel contact lenses in the presence of tear-film components.
    Cheng L; Muller SJ; Radke CJ
    Curr Eye Res; 2004 Feb; 28(2):93-108. PubMed ID: 14972715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of fibronectin adsorption on TiO2 surfaces.
    Sousa SR; Brás MM; Moradas-Ferreira P; Barbosa MA
    Langmuir; 2007 Jun; 23(13):7046-54. PubMed ID: 17508764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Silica Nanoparticle Langmuir Films to Determine the Effect of Surface Roughness on the Change in the Forces between Two Silica Surfaces by a Liquid Flow.
    McNamee CE; Kanno K
    Langmuir; 2023 Mar; 39(9):3450-3461. PubMed ID: 36825771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness.
    Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evaluation of oil recovery mechanism using a variety of surface-modified silica nanoparticles: Role of in-situ surface-modification in oil-wet system.
    Adil M; Mohd Zaid H; Raza F; Agam MA
    PLoS One; 2020; 15(7):e0236837. PubMed ID: 32730369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable wetting of nanoparticle-decorated polymer films.
    McConnell MD; Bassani AW; Yang S; Composto RJ
    Langmuir; 2009 Sep; 25(18):11014-20. PubMed ID: 19735150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity.
    Yang S; Pelton R
    Langmuir; 2011 Sep; 27(18):11409-15. PubMed ID: 21830818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of aqueous electrolytes on the wetting behavior of hydrophobic solid polymers-low-rate dynamic liquid/fluid contact angle measurements using axisymmetric drop shape analysis.
    Welzel PB; Rauwolf C; Yudin O; Grundke K
    J Colloid Interface Sci; 2002 Jul; 251(1):101-8. PubMed ID: 16290707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface chemistry of silica nanoparticles on contact angle of oil on calcite surfaces in concentrated brine with divalent ions.
    Alzobaidi S; Wu P; Da C; Zhang X; Hackbarth J; Angeles T; Rabat-Torki NJ; MacAuliffe S; Panja S; Johnston KP
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):656-668. PubMed ID: 32814189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of surface wettability through adsorption of partly fluorinated statistical and block polyelectrolytes from aqueous medium.
    Nurmi L; Kontturi K; Houbenov N; Laine J; Ruokolainen J; Seppälä J
    Langmuir; 2010 Oct; 26(19):15325-32. PubMed ID: 20825194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.
    Grundke K; Pöschel K; Synytska A; Frenzel R; Drechsler A; Nitschke M; Cordeiro AL; Uhlmann P; Welzel PB
    Adv Colloid Interface Sci; 2015 Aug; 222():350-76. PubMed ID: 25488284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.
    Stocco A; Su G; Nobili M; In M; Wang D
    Soft Matter; 2014 Sep; 10(36):6999-7007. PubMed ID: 24910076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable nanoparticle arrays at charged interfaces.
    Srivastava S; Nykypanchuk D; Fukuto M; Gang O
    ACS Nano; 2014 Oct; 8(10):9857-66. PubMed ID: 25197949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting properties of phospholipid dispersion on tunable hydrophobic SiO2-glass plates.
    Alexandrova L; Karakashev SI; Grigorov L; Phan CM; Smoukov SK
    Adv Colloid Interface Sci; 2015 Jun; 220():1-7. PubMed ID: 25441448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting properties of molecularly rough surfaces.
    Svoboda M; Malijevský A; Lísal M
    J Chem Phys; 2015 Sep; 143(10):104701. PubMed ID: 26374050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.