These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 34974341)
21. Optimization of nutrient removal performance of magnesia-containing constructed wetlands: a microcosm study. Wang Y; Shang Z; Lan W; Liang S; Kang X; Hu Z Environ Sci Pollut Res Int; 2021 Nov; 28(41):58583-58591. PubMed ID: 34120283 [TBL] [Abstract][Full Text] [Related]
22. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study. Ge Z; Wei D; Zhang J; Hu J; Liu Z; Li R Water Res; 2019 Jan; 148():153-161. PubMed ID: 30359945 [TBL] [Abstract][Full Text] [Related]
23. Removing nutrients from wastewater by constructed wetlands under perfluoroalkyl acids stress. Liu X; Chen L; Yu L; Hua Z; Zhang Y; Ma Y; Lu Y; Dong Y; Wang Y; Zhang Z; Xue H Environ Res; 2022 Sep; 212(Pt B):113334. PubMed ID: 35452673 [TBL] [Abstract][Full Text] [Related]
24. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045 [TBL] [Abstract][Full Text] [Related]
25. Performance and mechanism of sacrificed iron anode coupled with constructed wetlands (E-Fe) for simultaneous nitrogen and phosphorus removal. Zhou M; Cao J; Qiu Y; Lu Y; Guo J; Li C; Wang Y; Hao L; Ren H Environ Sci Pollut Res Int; 2023 Apr; 30(17):51245-51260. PubMed ID: 36809628 [TBL] [Abstract][Full Text] [Related]
26. Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland. Liang Y; Wei D; Hu J; Zhang J; Liu Z; Li A; Li R Water Res; 2020 Jan; 168():115154. PubMed ID: 31630020 [TBL] [Abstract][Full Text] [Related]
27. Iron plaque formation and its effect on key elements cycling in constructed wetlands: Functions and outlooks. Fan Y; Sun S; He S Water Res; 2023 May; 235():119837. PubMed ID: 36905735 [TBL] [Abstract][Full Text] [Related]
28. Influence of vegetation type and temperature on the performance of constructed wetlands for nutrient removal. Zhu H; Zhou QW; Yan BX; Liang YX; Yu XF; Gerchman Y; Cheng XW Water Sci Technol; 2018 Feb; 77(3-4):829-837. PubMed ID: 29431728 [TBL] [Abstract][Full Text] [Related]
29. Mn oxides changed nitrogen removal process in constructed wetlands with a microbial electrolysis cell. Zhang N; Li C; Xie H; Yang Y; Hu Z; Gao M; Liang S; Feng K Sci Total Environ; 2021 May; 770():144761. PubMed ID: 33736424 [TBL] [Abstract][Full Text] [Related]
30. Current progress on manganese in constructed wetlands: Bibliometrics, effects on wastewater treatment, and plant uptake. Zeng L; Liu X; Ma J; Yang J; Yang J; Zhou Y Environ Res; 2024 May; 249():118382. PubMed ID: 38331160 [TBL] [Abstract][Full Text] [Related]
31. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797 [TBL] [Abstract][Full Text] [Related]
32. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: Performance and microbial response. Liu X; Guo X; Liu Y; Lu S; Xi B; Zhang J; Wang Z; Bi B Environ Pollut; 2019 Nov; 254(Pt A):112996. PubMed ID: 31400665 [TBL] [Abstract][Full Text] [Related]
33. Addition of iron materials for improving the removal efficiencies of multiple contaminants from wastewater with a low C/N ratio in constructed wetlands at low temperatures. Zhao Z; Xu C; Zhang X; Song X Environ Sci Pollut Res Int; 2019 Apr; 26(12):11988-11997. PubMed ID: 30827018 [TBL] [Abstract][Full Text] [Related]
34. Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. Chen J; Li X; Jia W; Shen S; Deng S; Ji B; Chang J J Hazard Mater; 2021 Feb; 404(Pt A):124125. PubMed ID: 33049629 [TBL] [Abstract][Full Text] [Related]
35. Enhancing neonicotinoid removal in recirculating constructed wetlands: The impact of Fe/Mn biochar and microbial interactions. Tang X; Chen Y; Zheng W; Chen L; Liu H; Li M; Yang Y J Hazard Mater; 2024 Sep; 476():135139. PubMed ID: 38981230 [TBL] [Abstract][Full Text] [Related]
36. Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. Yang X; He Q; Guo F; Sun X; Zhang J; Chen Y J Hazard Mater; 2021 Jan; 401():123270. PubMed ID: 32645543 [TBL] [Abstract][Full Text] [Related]
37. Materials in constructed wetlands for wastewater remediation: A review. Patyal V; Jaspal D; Khare K Water Environ Res; 2021 Dec; 93(12):2853-2872. PubMed ID: 34595802 [TBL] [Abstract][Full Text] [Related]
38. Investigating the addition of Fe for improving contaminant removal and regulating microbes in a simulated coastal wetland. Gao X; Liu Y; Cheng M; Wang Z; Zhang Y; Zhao Z Environ Sci Pollut Res Int; 2024 Jun; 31(29):42174-42184. PubMed ID: 38861066 [TBL] [Abstract][Full Text] [Related]
39. Differences in bacterial N, P, and COD removal in pilot-scale constructed wetlands with varying flow types. Zeng L; Tao R; Tam NF; Huang W; Zhang L; Man Y; Xu X; Dai Y; Yang Y Bioresour Technol; 2020 Dec; 318():124061. PubMed ID: 32905947 [TBL] [Abstract][Full Text] [Related]
40. Enhancing phosphorus removal in constructed wetlands with ochre from mine drainage treatment. Heal KV; Dobbie KE; Bozika E; McHaffie H; Simpson AE; Smith KA Water Sci Technol; 2005; 51(9):275-82. PubMed ID: 16042268 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]