These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 34974387)
1. Comparative transcriptomic analysis reveals genes related to the rapid accumulation of oleic acid in Camellia chekiangoleosa, an oil tea plant with early maturity and large fruit. Wang Z; Huang B; Ye J; He Y; Tang S; Wang H; Wen Q Plant Physiol Biochem; 2022 Jan; 171():95-104. PubMed ID: 34974387 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptomic and Lipidomic Analysis of Fatty Acid Accumulation in Three Yang D; Wang R; Lai H; He Y; Chen Y; Xun C; Zhang Y; He Z J Agric Food Chem; 2024 Aug; 72(32):18257-18270. PubMed ID: 39084609 [No Abstract] [Full Text] [Related]
3. Comparative transcriptomic analysis of high- and low-oil Wu B; Ruan C; Han P; Ruan D; Xiong C; Ding J; Liu S 3 Biotech; 2019 Jul; 9(7):257. PubMed ID: 31192082 [TBL] [Abstract][Full Text] [Related]
4. Full-Length Transcriptome from Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832 [No Abstract] [Full Text] [Related]
5. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 ( Liu H; Gu J; Lu Q; Li H; Hong Y; Chen X; Ren L; Deng L; Liang X Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31242553 [TBL] [Abstract][Full Text] [Related]
7. Gene Structural Specificity and Expression of Zhou P; Qu Y; Wang Z; Huang B; Wen Q; Xin Y; Ni Z; Xu L Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834845 [No Abstract] [Full Text] [Related]
8. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285 [No Abstract] [Full Text] [Related]
9. Transcriptomic analysis of α-linolenic acid content and biosynthesis in Paeonia ostii fruits and seeds. Yu SY; Zhang X; Huang LB; Lyu YP; Zhang Y; Yao ZJ; Zhang XX; Yuan JH; Hu YH BMC Genomics; 2021 Apr; 22(1):297. PubMed ID: 33892636 [TBL] [Abstract][Full Text] [Related]
10. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree ( Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W Cells; 2021 Dec; 11(1):. PubMed ID: 35011633 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptomic Analysis Reveals Regulatory Mechanisms of Theanine Synthesis in Tea ( Tai Y; Ling C; Wang H; Yang L; She G; Wang C; Yu S; Chen W; Liu C; Wan X J Agric Food Chem; 2019 Sep; 67(36):10235-10244. PubMed ID: 31436988 [TBL] [Abstract][Full Text] [Related]
12. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera. Zhang F; Li Z; Zhou J; Gu Y; Tan X BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Dussert S; Guerin C; Andersson M; Joët T; Tranbarger TJ; Pizot M; Sarah G; Omore A; Durand-Gasselin T; Morcillo F Plant Physiol; 2013 Jul; 162(3):1337-58. PubMed ID: 23735505 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805 [TBL] [Abstract][Full Text] [Related]
15. The reference genome of camellia chekiangoleosa provides insights into camellia evolution and tea oil biosynthesis. Shen TF; Huang B; Xu M; Zhou PY; Ni ZX; Gong C; Wen Q; Cao FL; Xu LA Hortic Res; 2022 Jan; 9():. PubMed ID: 35039868 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic analysis identifies genes responsible for fruit count and oil yield in the oil tea plant Camellia chekiangoleosa. Xie Y; Wang X Sci Rep; 2018 Apr; 8(1):6637. PubMed ID: 29703942 [TBL] [Abstract][Full Text] [Related]
17. Dynamic transcriptome analysis identifies genes related to fatty acid biosynthesis in the seeds of Prunus pedunculata Pall. Bao W; Ao D; Wang L; Ling Z; Chen M; Bai Y; Wuyun TN; Chen J; Zhang S; Li F BMC Plant Biol; 2021 Mar; 21(1):152. PubMed ID: 33761884 [TBL] [Abstract][Full Text] [Related]
18. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera). Zeng Y; Tan X; Zhang L; Jiang N; Cao H PLoS One; 2014; 9(9):e107422. PubMed ID: 25215538 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889 [TBL] [Abstract][Full Text] [Related]
20. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis. Wang ZW; Jiang C; Wen Q; Wang N; Tao YY; Xu LA Gene; 2014 Mar; 538(1):1-7. PubMed ID: 24462969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]