These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34975237)

  • 41. Correlation of subway turnstile entries and COVID-19 incidence and deaths in New York City.
    Fathi-Kazerooni S; Rojas-Cessa R; Dong Z; Umpaichitra V
    Infect Dis Model; 2021; 6():183-194. PubMed ID: 33294750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unhealthful Food-and-Beverage Advertising in Subway Stations: Targeted Marketing, Vulnerable Groups, Dietary Intake, and Poor Health.
    Lucan SC; Maroko AR; Sanon OC; Schechter CB
    J Urban Health; 2017 Apr; 94(2):220-232. PubMed ID: 28271237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidemiology of subway-related fatalities in New York City, 1990-2003.
    Gershon RR; Pearson JM; Nandi V; Vlahov D; Bucciarelli-Prann A; Tracy M; Tardiff K; Galea S
    J Safety Res; 2008; 39(6):583-8. PubMed ID: 19064043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time lag effects of COVID-19 policies on transportation systems: A comparative study of New York City and Seattle.
    Bian Z; Zuo F; Gao J; Chen Y; Pavuluri Venkata SSC; Duran Bernardes S; Ozbay K; Ban XJ; Wang J
    Transp Res Part A Policy Pract; 2021 Mar; 145():269-283. PubMed ID: 36569966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of Social Media on Travel Behaviors during the COVID-19 Pandemic: Evidence from New York City.
    Ye Q; Ozbay K; Zuo F; Chen X
    Transp Res Rec; 2023 Apr; 2677(4):219-238. PubMed ID: 37153201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of COVID-19 travel-restriction policies on road traffic accident patterns with emphasis on cyclists: A case study of New York City.
    Li J; Zhao Z
    Accid Anal Prev; 2022 Mar; 167():106586. PubMed ID: 35131653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prevalence of violent advertisements in New York City subways.
    Fullwood D; Cameron C; Means S; Anton S; Stickley ZL; Hale R; Wilkie DJ
    Health Promot Perspect; 2021; 11(2):219-229. PubMed ID: 34195046
    [No Abstract]   [Full Text] [Related]  

  • 48. Did the COVID-19 vaccine rollout impact transportation demand? A case study in New York City.
    Drummond J; Hasnine MS
    J Transp Health; 2023 Jan; 28():101539. PubMed ID: 36466107
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impacts of COVID-19 on urban rail transit ridership using the Synthetic Control Method.
    Xin M; Shalaby A; Feng S; Zhao H
    Transp Policy (Oxf); 2021 Sep; 111():1-16. PubMed ID: 36568355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Correlation between the Level of Social Distancing and Activity of Influenza Epidemic or COVID-19 Pandemic: A Subway Use-Based Assessment.
    Seong H; Hong JW; Hyun HJ; Yoon JG; Noh JY; Cheong HJ; Kim WJ; Jung JH; Song JY
    J Clin Med; 2021 Jul; 10(15):. PubMed ID: 34362150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mobility in post-pandemic economic reopening under social distancing guidelines: Congestion, emissions, and contact exposure in public transit.
    Wang D; Tayarani M; Yueshuai He B; Gao J; Chow JYJ; Oliver Gao H; Ozbay K
    Transp Res Part A Policy Pract; 2021 Nov; 153():151-170. PubMed ID: 34566278
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in Subway Ridership in Response to COVID-19 in Seoul, South Korea: Implications for Social Distancing.
    Park J
    Cureus; 2020 Apr; 12(4):e7668. PubMed ID: 32313784
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling epidemic spread in cities using public transportation as a proxy for generalized mobility trends.
    Malik O; Gong B; Moussawi A; Korniss G; Szymanski BK
    Sci Rep; 2022 Apr; 12(1):6372. PubMed ID: 35430595
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system.
    Chillrud SN; Epstein D; Ross JM; Sax SN; Pederson D; Spengler JD; Kinney PL
    Environ Sci Technol; 2004 Feb; 38(3):732-7. PubMed ID: 14968857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The COVID-19 impacts on bikeshare systems in small rural communities: Case study of bikeshare riders in Montgomery County, VA.
    Almannaa M; Woodson C; Ashqar H; Elhenawy M
    PLoS One; 2022; 17(12):e0278207. PubMed ID: 36454776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exposure to fine particulate matter in the New York City subway system during home-work commute.
    Azad S; Ferrer-Cid P; Ghandehari M
    PLoS One; 2024; 19(8):e0307096. PubMed ID: 39110716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short- and long-term effects of COVID-19 on bicycle sharing usage.
    Berezvai Z
    Transp Res Interdiscip Perspect; 2022 Sep; 15():100674. PubMed ID: 36034682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pandemic transit: examining transit use changes and equity implications in Boston, Houston, and Los Angeles.
    Paul J; Taylor BD
    Transportation (Amst); 2022 Oct; ():1-29. PubMed ID: 36340503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Data-driven analysis of the impact of COVID-19 on Madrid's public transport during each phase of the pandemic.
    Fernández Pozo R; Wilby MR; Vinagre Díaz JJ; Rodríguez González AB
    Cities; 2022 Aug; 127():103723. PubMed ID: 35530724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring the Health and Spatial Equity Implications of the New York City Bike Share System.
    Babagoli MA; Kaufman TK; Noyes P; Sheffield PE
    J Transp Health; 2019 Jun; 13():200-209. PubMed ID: 32832380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.