These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34975367)

  • 21. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voice Control Interface Prototype for Assistive Robots for People Living with Upper Limb Disabilities.
    Poirier S; Routhier F; Campeau-Lecours A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():46-52. PubMed ID: 31374605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wheelchair-Mounted Upper Limb Robotic Exoskeleton with Adaptive Controller for Activities of Daily Living.
    Schabron B; Desai J; Yihun Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.
    Lauretti C; Cordella F; Ciancio AL; Trigili E; Catalan JM; Badesa FJ; Crea S; Pagliara SM; Sterzi S; Vitiello N; Garcia Aracil N; Zollo L
    Front Neurorobot; 2018; 12():5. PubMed ID: 29527161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review.
    Fisahn C; Aach M; Jansen O; Moisi M; Mayadev A; Pagarigan KT; Dettori JR; Schildhauer TA
    Global Spine J; 2016 Dec; 6(8):822-841. PubMed ID: 27853668
    [No Abstract]   [Full Text] [Related]  

  • 26. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation.
    Klauer C; Schauer T; Reichenfelser W; Karner J; Zwicker S; Gandolla M; Ambrosini E; Ferrante S; Hack M; Jedlitschka A; Duschau-Wicke A; Gföhler M; Pedrocchi A
    Front Neurosci; 2014; 8():262. PubMed ID: 25228853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing Mode-Switching Strategies for Assistive Robotic Manipulators Using a Preliminary Version of the Novel Non-invasive Tongue-Computer Interface.
    Santos Cardoso AS; Mohammadi M; Kaseler RL; Jochumsen M; Andreasen Struijk LNS
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of tongue interface with keyboard for control of an assistive robotic arm.
    Struijk LNSA; Lontis R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():925-928. PubMed ID: 28813939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Safety and efficacy of medically performed tongue piercing in people with tetraplegia for use with tongue-operated assistive technology.
    Laumann A; Holbrook J; Minocha J; Rowles D; Nardone B; West D; Kim J; Bruce J; Roth EJ; Ghovanloo M
    Top Spinal Cord Inj Rehabil; 2015; 21(1):61-76. PubMed ID: 25762861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upper-limb actuated exoskeleton for muscular dystrophy patients: preliminary results
    Gasperina SD; Gfoehler M; Puchinger M; Braghin F; Pedrocchi A; Gandolla M; Manti A; Aquilante L; Longatelli V; D'Angelo MG; Molteni F; Biffi E; Rossini M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4431-4435. PubMed ID: 31946849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Multimodal Assistive-Robotic-Arm Control System to Increase Independence After Tetraplegia.
    Hansen TC; Tully TN; John Mathews V; Warren DJ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2124-2133. PubMed ID: 38829756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.
    Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A
    Front Neurosci; 2016; 10():367. PubMed ID: 27555805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assistive Control System for Upper Limb Rehabilitation Robot.
    Chen SH; Lien WM; Wang WW; Lee GD; Hsu LC; Lee KW; Lin SY; Lin CH; Fu LC; Lai JS; Luh JJ; Chen WS
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1199-1209. PubMed ID: 26929055
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
    Hochberg LR; Bacher D; Jarosiewicz B; Masse NY; Simeral JD; Vogel J; Haddadin S; Liu J; Cash SS; van der Smagt P; Donoghue JP
    Nature; 2012 May; 485(7398):372-5. PubMed ID: 22596161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Usability of the inductive tongue computer interface: Internet use, speaking, and drinking - evaluated by two users with disabilities.
    Andreasen Struijk LNS; Bentsen B; Gaihede M; Lontis RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training.
    Sarasola-Sanz A; López-Larraz E; Irastorza-Landa N; Rossi G; Figueiredo T; McIntyre J; Ramos-Murguialday A
    Front Neurosci; 2022; 16():764936. PubMed ID: 35360179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.