These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34975381)

  • 1. Generative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases.
    Momeni S; Fazlollahi A; Lebrat L; Yates P; Rowe C; Gao Y; Liew AW; Salvado O
    Front Neurosci; 2021; 15():778767. PubMed ID: 34975381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic microbleeds generation for classifier training without ground truth.
    Momeni S; Fazlollahi A; Yates P; Rowe C; Gao Y; Liew AW; Salvado O
    Comput Methods Programs Biomed; 2021 Aug; 207():106127. PubMed ID: 34051412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
    Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM
    Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.
    Suwalska A; Wang Y; Yuan Z; Jiang Y; Zhu D; Chen J; Cui M; Chen X; Suo C; Polanska J
    Comput Biol Med; 2022 Dec; 151(Pt A):106233. PubMed ID: 36370581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting cerebral microbleeds via deep learning with features enhancement by reusing ground truth.
    Li T; Zou Y; Bai P; Li S; Wang H; Chen X; Meng Z; Kang Z; Zhou G
    Comput Methods Programs Biomed; 2021 Jun; 204():106051. PubMed ID: 33831723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information.
    Dunphy K; Fekri MN; Grolinger K; Sadhu A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Iriondo A; Lluvia I; Aizpurua G
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance.
    Myung MJ; Lee KM; Kim HG; Oh J; Lee JY; Shin I; Kim EJ; Lee JS
    J Stroke Cerebrovasc Dis; 2021 Sep; 30(9):105886. PubMed ID: 34175642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning.
    Morrison MA; Payabvash S; Chen Y; Avadiappan S; Shah M; Zou X; Hess CP; Lupo JM
    Neuroimage Clin; 2018; 20():498-505. PubMed ID: 30140608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks.
    Hu N; Zhang T; Wu Y; Tang B; Li M; Song B; Gong Q; Wu M; Gu S; Lui S
    Ann Transl Med; 2022 Jan; 10(2):35. PubMed ID: 35282087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning.
    Sundaresan V; Arthofer C; Zamboni G; Dineen RA; Rothwell PM; Sotiropoulos SN; Auer DP; Tozer DJ; Markus HS; Miller KL; Dragonu I; Sprigg N; Alfaro-Almagro F; Jenkinson M; Griffanti L
    Front Neuroinform; 2021; 15():777828. PubMed ID: 35126079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.
    Lin TT; Sun YY; Wang CT; Cheng WC; Lu IH; Lin CY; Chen SH
    Bioinform Adv; 2022; 2(1):vbac080. PubMed ID: 36699402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).
    Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M
    Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.
    Sundaresan V; Arthofer C; Zamboni G; Murchison AG; Dineen RA; Rothwell PM; Auer DP; Wang C; Miller KL; Tendler BC; Alfaro-Almagro F; Sotiropoulos SN; Sprigg N; Griffanti L; Jenkinson M
    Front Neuroinform; 2023; 17():1204186. PubMed ID: 37492242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of GAN-Based, Synthetic T2-Weighted Fat Saturated Images in the Routine Radiological Workflow Improves Spinal Pathology Detection.
    Schlaeger S; Drummer K; Husseini ME; Kofler F; Sollmann N; Schramm S; Zimmer C; Kirschke JS; Wiestler B
    Diagnostics (Basel); 2023 Mar; 13(5):. PubMed ID: 36900118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.