BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34975381)

  • 1. Generative Model of Brain Microbleeds for MRI Detection of Vascular Marker of Neurodegenerative Diseases.
    Momeni S; Fazlollahi A; Lebrat L; Yates P; Rowe C; Gao Y; Liew AW; Salvado O
    Front Neurosci; 2021; 15():778767. PubMed ID: 34975381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic microbleeds generation for classifier training without ground truth.
    Momeni S; Fazlollahi A; Yates P; Rowe C; Gao Y; Liew AW; Salvado O
    Comput Methods Programs Biomed; 2021 Aug; 207():106127. PubMed ID: 34051412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generative adversarial network based synthetic data training model for lightweight convolutional neural networks.
    Rather IH; Kumar S
    Multimed Tools Appl; 2023 May; ():1-23. PubMed ID: 37362646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Learning-Based MRI Microbleeds Detection for Cerebral Small Vessel Disease on Quantitative Susceptibility Mapping.
    Xia P; Hui ES; Chua BJ; Huang F; Wang Z; Zhang H; Yu H; Lau KK; Mak HKF; Cao P
    J Magn Reson Imaging; 2023 Dec; ():. PubMed ID: 38149750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
    Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM
    Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.
    Suwalska A; Wang Y; Yuan Z; Jiang Y; Zhu D; Chen J; Cui M; Chen X; Suo C; Polanska J
    Comput Biol Med; 2022 Dec; 151(Pt A):106233. PubMed ID: 36370581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting cerebral microbleeds via deep learning with features enhancement by reusing ground truth.
    Li T; Zou Y; Bai P; Li S; Wang H; Chen X; Meng Z; Kang Z; Zhou G
    Comput Methods Programs Biomed; 2021 Jun; 204():106051. PubMed ID: 33831723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information.
    Dunphy K; Fekri MN; Grolinger K; Sadhu A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraclass Image Augmentation for Defect Detection Using Generative Adversarial Neural Networks.
    Sampath V; Maurtua I; Aguilar Martín JJ; Iriondo A; Lluvia I; Aizpurua G
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance.
    Myung MJ; Lee KM; Kim HG; Oh J; Lee JY; Shin I; Kim EJ; Lee JS
    J Stroke Cerebrovasc Dis; 2021 Sep; 30(9):105886. PubMed ID: 34175642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning.
    Morrison MA; Payabvash S; Chen Y; Avadiappan S; Shah M; Zou X; Hess CP; Lupo JM
    Neuroimage Clin; 2018; 20():498-505. PubMed ID: 30140608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting brain lesions in suspected acute ischemic stroke with CT-based synthetic MRI using generative adversarial networks.
    Hu N; Zhang T; Wu Y; Tang B; Li M; Song B; Gong Q; Wu M; Gu S; Lui S
    Ann Transl Med; 2022 Jan; 10(2):35. PubMed ID: 35282087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Detection of Candidate Subjects With Cerebral Microbleeds Using Machine Learning.
    Sundaresan V; Arthofer C; Zamboni G; Dineen RA; Rothwell PM; Sotiropoulos SN; Auer DP; Tozer DJ; Markus HS; Miller KL; Dragonu I; Sprigg N; Alfaro-Almagro F; Jenkinson M; Griffanti L
    Front Neuroinform; 2021; 15():777828. PubMed ID: 35126079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network.
    Rahnemoonfar M; Johnson J; Paden J
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI4AVP: an antiviral peptides predictor in deep learning approach with generative adversarial network data augmentation.
    Lin TT; Sun YY; Wang CT; Cheng WC; Lu IH; Lin CY; Chen SH
    Bioinform Adv; 2022; 2(1):vbac080. PubMed ID: 36699402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Skin Cancer Classification Using Heavy-Tailed Student T-Distribution in Generative Adversarial Networks (TED-GAN).
    Ahmad B; Jun S; Palade V; You Q; Mao L; Zhongjie M
    Diagnostics (Basel); 2021 Nov; 11(11):. PubMed ID: 34829494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated detection of cerebral microbleeds on MR images using knowledge distillation framework.
    Sundaresan V; Arthofer C; Zamboni G; Murchison AG; Dineen RA; Rothwell PM; Auer DP; Wang C; Miller KL; Tendler BC; Alfaro-Almagro F; Sotiropoulos SN; Sprigg N; Griffanti L; Jenkinson M
    Front Neuroinform; 2023; 17():1204186. PubMed ID: 37492242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.