These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 34975420)
1. Genoarchitectonic Compartmentalization of the Embryonic Telencephalon: Insights From the Domestic Cat. Siskos N; Ververidis C; Skavdis G; Grigoriou ME Front Neuroanat; 2021; 15():785541. PubMed ID: 34975420 [TBL] [Abstract][Full Text] [Related]
2. Conserved Genoarchitecture of the Basal Hypothalamus in Zebrafish Embryos. Schredelseker T; Driever W Front Neuroanat; 2020; 14():3. PubMed ID: 32116574 [TBL] [Abstract][Full Text] [Related]
3. Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics. López JM; Jiménez S; Morona R; Lozano D; Moreno N J Comp Neurol; 2022 Apr; 530(5):834-855. PubMed ID: 34547112 [TBL] [Abstract][Full Text] [Related]
4. Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. Mueller T; Wullimann MF; Guo S J Comp Neurol; 2008 Mar; 507(2):1245-57. PubMed ID: 18181142 [TBL] [Abstract][Full Text] [Related]
5. Defining pallial and subpallial divisions in the developing Xenopus forebrain. Bachy I; Berthon J; Rétaux S Mech Dev; 2002 Sep; 117(1-2):163-72. PubMed ID: 12204256 [TBL] [Abstract][Full Text] [Related]
6. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Backman M; Machon O; Mygland L; van den Bout CJ; Zhong W; Taketo MM; Krauss S Dev Biol; 2005 Mar; 279(1):155-68. PubMed ID: 15708565 [TBL] [Abstract][Full Text] [Related]
7. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. Puelles L; Kuwana E; Puelles E; Bulfone A; Shimamura K; Keleher J; Smiga S; Rubenstein JL J Comp Neurol; 2000 Aug; 424(3):409-38. PubMed ID: 10906711 [TBL] [Abstract][Full Text] [Related]
8. Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Zhang J; Zhao R; Lin S; Yang D; Lu S; Liu Z; Gao Y; Zhang Y; Hou B; Xi C; Liu J; Bing J; Pang E; Lin K; Zeng S Sci Rep; 2024 Mar; 14(1):6102. PubMed ID: 38480729 [TBL] [Abstract][Full Text] [Related]
9. Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. Stoykova A; Treichel D; Hallonet M; Gruss P J Neurosci; 2000 Nov; 20(21):8042-50. PubMed ID: 11050125 [TBL] [Abstract][Full Text] [Related]
10. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. Ganz J; Kaslin J; Freudenreich D; Machate A; Geffarth M; Brand M J Comp Neurol; 2012 Feb; 520(3):633-55. PubMed ID: 21858823 [TBL] [Abstract][Full Text] [Related]
11. Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. Brox A; Puelles L; Ferreiro B; Medina L J Comp Neurol; 2004 Jul; 474(4):562-77. PubMed ID: 15174073 [TBL] [Abstract][Full Text] [Related]
12. Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain. Osório J; Mueller T; Rétaux S; Vernier P; Wullimann MF J Comp Neurol; 2010 Mar; 518(6):851-71. PubMed ID: 20058311 [TBL] [Abstract][Full Text] [Related]
13. Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area. Puelles L; Morales-Delgado N; Merchán P; Castro-Robles B; Martínez-de-la-Torre M; Díaz C; Ferran JL Brain Struct Funct; 2016 Jul; 221(6):3027-65. PubMed ID: 26189100 [TBL] [Abstract][Full Text] [Related]
14. Secondary neurogenesis and telencephalic organization in zebrafish and mice: a brief review. Wullimann MF Integr Zool; 2009 Mar; 4(1):123-133. PubMed ID: 21392282 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Puelles L; Kuwana E; Puelles E; Rubenstein JL Eur J Morphol; 1999 Apr; 37(2-3):139-50. PubMed ID: 10342446 [TBL] [Abstract][Full Text] [Related]
16. The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Santos-Durán GN; Ferreiro-Galve S; Menuet A; Quintana-Urzainqui I; Mazan S; Rodríguez-Moldes I; Candal E Front Neuroanat; 2016; 10():113. PubMed ID: 27932958 [TBL] [Abstract][Full Text] [Related]
17. PAX6 immunoreactivity in the diencephalon and midbrain of alligator during early development. Pritz MB; Ruan YW Brain Behav Evol; 2009; 73(1):1-15. PubMed ID: 19169008 [TBL] [Abstract][Full Text] [Related]
18. Oligodendrocyte precursors originate in the parabasal band of the basal plate in prosomere 1 and migrate into the alar prosencephalon during chick development. Garcia-Lopez R; Martinez S Glia; 2010 Sep; 58(12):1437-50. PubMed ID: 20648637 [TBL] [Abstract][Full Text] [Related]
19. Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution. van den Akker WM; Brox A; Puelles L; Durston AJ; Medina L J Comp Neurol; 2008 Jan; 506(2):211-23. PubMed ID: 18022953 [TBL] [Abstract][Full Text] [Related]