These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34975527)

  • 1. Frequent Manipulation of Resistance Training Variables Promotes Myofibrillar Spacing Changes in Resistance-Trained Individuals.
    Fox CD; Mesquita PHC; Godwin JS; Angleri V; Damas F; Ruple BA; Sexton CL; Brown MD; Kavazis AN; Young KC; Ugrinowitsch C; Libardi CA; Roberts MD
    Front Physiol; 2021; 12():773995. PubMed ID: 34975527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myofibrillar protein synthesis and muscle hypertrophy individualized responses to systematically changing resistance training variables in trained young men.
    Damas F; Angleri V; Phillips SM; Witard OC; Ugrinowitsch C; Santanielo N; Soligon SD; Costa LAR; Lixandrão ME; Conceição MS; Libardi CA
    J Appl Physiol (1985); 2019 Sep; 127(3):806-815. PubMed ID: 31268828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy.
    Haun CT; Vann CG; Osburn SC; Mumford PW; Roberson PA; Romero MA; Fox CD; Johnson CA; Parry HA; Kavazis AN; Moon JR; Badisa VLD; Mwashote BM; Ibeanusi V; Young KC; Roberts MD
    PLoS One; 2019; 14(6):e0215267. PubMed ID: 31166954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myofibril and Mitochondrial Area Changes in Type I and II Fibers Following 10 Weeks of Resistance Training in Previously Untrained Men.
    Ruple BA; Godwin JS; Mesquita PHC; Osburn SC; Sexton CL; Smith MA; Ogletree JC; Goodlett MD; Edison JL; Ferrando AA; Fruge AD; Kavazis AN; Young KC; Roberts MD
    Front Physiol; 2021; 12():728683. PubMed ID: 34630147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistance training variable manipulations are less relevant than intrinsic biology in affecting muscle fiber hypertrophy.
    Angleri V; Damas F; Phillips SM; Selistre-de-Araujo HS; Cornachione AS; Stotzer US; Santanielo N; Soligon SD; Costa LAR; Lixandrão ME; Conceição MS; Vechin FC; Ugrinowitsch C; Libardi CA
    Scand J Med Sci Sports; 2022 May; 32(5):821-832. PubMed ID: 35092084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal Muscle Protein Composition Adaptations to 10 Weeks of High-Load Resistance Training in Previously-Trained Males.
    Vann CG; Osburn SC; Mumford PW; Roberson PA; Fox CD; Sexton CL; Johnson MR; Johnson JS; Shake J; Moore JH; Millevoi K; Beck DT; Badisa VLD; Mwashote BM; Ibeanusi V; Singh RK; Roberts MD
    Front Physiol; 2020; 11():259. PubMed ID: 32292355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal Muscle Myofibrillar Protein Abundance Is Higher in Resistance-Trained Men, and Aging in the Absence of Training May Have an Opposite Effect.
    Vann CG; Roberson PA; Osburn SC; Mumford PW; Romero MA; Fox CD; Moore JH; Haun CT; Beck DT; Moon JR; Kavazis AN; Young KC; Badisa VLD; Mwashote BM; Ibeanusi V; Singh RK; Roberts MD
    Sports (Basel); 2020 Jan; 8(1):. PubMed ID: 31936810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training.
    Roberts MD; Romero MA; Mobley CB; Mumford PW; Roberson PA; Haun CT; Vann CG; Osburn SC; Holmes HH; Greer RA; Lockwood CM; Parry HA; Kavazis AN
    PeerJ; 2018; 6():e5338. PubMed ID: 30065891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of low-load resistance training with blood flow restriction on muscle fiber myofibrillar and extracellular area.
    Libardi CA; Godwin JS; Reece TM; Ugrinowitsch C; Herda TJ; Roberts MD
    Front Physiol; 2024; 15():1368646. PubMed ID: 38444764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of High-Volume Versus High-Load Resistance Training on Skeletal Muscle Growth and Molecular Adaptations.
    Vann CG; Sexton CL; Osburn SC; Smith MA; Haun CT; Rumbley MN; Mumford PW; Montgomery NT; Ruple BA; McKendry J; Mcleod J; Bashir A; Beyers RJ; Brook MS; Smith K; Atherton PJ; Beck DT; McDonald JR; Young KC; Phillips SM; Roberts MD
    Front Physiol; 2022; 13():857555. PubMed ID: 35360253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-training Skeletal Muscle Fiber Size and Predominant Fiber Type Best Predict Hypertrophic Responses to 6 Weeks of Resistance Training in Previously Trained Young Men.
    Haun CT; Vann CG; Mobley CB; Osburn SC; Mumford PW; Roberson PA; Romero MA; Fox CD; Parry HA; Kavazis AN; Moon JR; Young KC; Roberts MD
    Front Physiol; 2019; 10():297. PubMed ID: 30971942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury.
    Gorgey AS; Graham ZA; Chen Q; Rivers J; Adler RA; Lesnefsky EJ; Cardozo CP
    J Appl Physiol (1985); 2020 Jun; 128(6):1487-1496. PubMed ID: 32352341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity.
    Holm L; Reitelseder S; Pedersen TG; Doessing S; Petersen SG; Flyvbjerg A; Andersen JL; Aagaard P; Kjaer M
    J Appl Physiol (1985); 2008 Nov; 105(5):1454-61. PubMed ID: 18787090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle myosin heavy chain protein fragmentation as a potential marker of protein degradation in response to resistance training and disuse atrophy.
    Plotkin DL; Mattingly ML; Anglin DA; Michel JM; Godwin JS; McIntosh MC; Bergamasco JGA; Scarpelli MC; Angleri V; Taylor LW; Willoughby DS; Mobley CB; Kavazis AN; Ugrinowitsch C; Libardi CA; Roberts MD
    bioRxiv; 2024 May; ():. PubMed ID: 38826385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training.
    Kim PL; Staron RS; Phillips SM
    J Physiol; 2005 Oct; 568(Pt 1):283-90. PubMed ID: 16051622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein composition of endurance trained human skeletal muscle.
    Reidy PT; Hinkley JM; Trappe TA; Trappe SW; Harber MP
    Int J Sports Med; 2014 Jun; 35(6):476-81. PubMed ID: 24234010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal response of desmin and dystrophin proteins to progressive resistance exercise in human skeletal muscle.
    Woolstenhulme MT; Conlee RK; Drummond MJ; Stites AW; Parcell AC
    J Appl Physiol (1985); 2006 Jun; 100(6):1876-82. PubMed ID: 16439510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength Training Effects on Muscular Regeneration after ACL Reconstruction.
    Friedmann-Bette B; Profit F; Gwechenberger T; Weiberg N; Parstorfer M; Weber MA; Streich N; Barié A
    Med Sci Sports Exerc; 2018 Jun; 50(6):1152-1161. PubMed ID: 29389836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Graded Whey Supplementation During Extreme-Volume Resistance Training.
    Haun CT; Vann CG; Mobley CB; Roberson PA; Osburn SC; Holmes HM; Mumford PM; Romero MA; Young KC; Moon JR; Gladden LB; Arnold RD; Israetel MA; Kirby AN; Roberts MD
    Front Nutr; 2018; 5():84. PubMed ID: 30255024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Muscle Fiber Profiles, Mitochondrial Content, and Enzyme Activities of the Exceptionally Well-Trained Arm and Leg Muscles of Elite Cross-Country Skiers.
    Ørtenblad N; Nielsen J; Boushel R; Söderlund K; Saltin B; Holmberg HC
    Front Physiol; 2018; 9():1031. PubMed ID: 30116201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.