BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 34975835)

  • 1. Chronic IL-15 Stimulation and Impaired mTOR Signaling and Metabolism in Natural Killer Cells During Acute Myeloid Leukemia.
    Bou-Tayeh B; Laletin V; Salem N; Just-Landi S; Fares J; Leblanc R; Balzano M; Kerdiles YM; Bidaut G; Hérault O; Olive D; Aurrand-Lions M; Walzer T; Nunès JA; Fauriat C
    Front Immunol; 2021; 12():730970. PubMed ID: 34975835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells.
    Mao Y; van Hoef V; Zhang X; Wennerberg E; Lorent J; Witt K; Masvidal L; Liang S; Murray S; Larsson O; Kiessling R; Lundqvist A
    Blood; 2016 Sep; 128(11):1475-89. PubMed ID: 27465917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
    Gao Y; Gao J; Li M; Zheng Y; Wang Y; Zhang H; Wang W; Chu Y; Wang X; Xu M; Cheng T; Ju Z; Yuan W
    J Hematol Oncol; 2016 Apr; 9():36. PubMed ID: 27071307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors.
    Szczepanski MJ; Szajnik M; Welsh A; Foon KA; Whiteside TL; Boyiadzis M
    Cancer Immunol Immunother; 2010 Jan; 59(1):73-9. PubMed ID: 19526239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Killer Cell Subpopulations and Inhibitory Receptor Dynamics in Myelodysplastic Syndromes and Acute Myeloid Leukemia.
    Cianga VA; Campos Catafal L; Cianga P; Pavel Tanasa M; Cherry M; Collet P; Tavernier E; Guyotat D; Rusu C; Aanei CM
    Front Immunol; 2021; 12():665541. PubMed ID: 33986753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDK1 orchestrates early NK cell development through induction of E4BP4 expression and maintenance of IL-15 responsiveness.
    Yang M; Li D; Chang Z; Yang Z; Tian Z; Dong Z
    J Exp Med; 2015 Feb; 212(2):253-65. PubMed ID: 25624444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Myeloid Leukemia Alters Group 1 Innate Lymphoid Cell Differentiation from a Common Precursor.
    Lordo MR; Wu KG; Altynova E; Shilo N; Kronen P; Nalin AP; Weigel C; Zhang X; Yu J; Oakes CC; Caligiuri MA; Freud AG; Mundy-Bosse BL
    J Immunol; 2021 Sep; 207(6):1672-1682. PubMed ID: 34417259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic suppression of type I interferon production underlies the therapeutic efficacy of IL-15-producing natural killer cells in B-cell acute lymphoblastic leukemia.
    Kumar A; Taghi Khani A; Duault C; Aramburo S; Sanchez Ortiz A; Lee SJ; Chan A; McDonald T; Huang M; Lacayo NJ; Sakamoto KM; Yu J; Hurtz C; Carroll M; Tasian SK; Ghoda L; Marcucci G; Gu Z; Rosen ST; Armenian S; Izraeli S; Chen CW; Caligiuri MA; Forman SJ; Maecker HT; Swaminathan S
    J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37217248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A trispecific killer engager molecule against CLEC12A effectively induces NK-cell mediated killing of AML cells.
    Arvindam US; van Hauten PMM; Schirm D; Schaap N; Hobo W; Blazar BR; Vallera DA; Dolstra H; Felices M; Miller JS
    Leukemia; 2021 Jun; 35(6):1586-1596. PubMed ID: 33097838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fc-engineered anti-CD33 monoclonal antibody potentiates cytotoxicity of membrane-bound interleukin-21 expanded natural killer cells in acute myeloid leukemia.
    Mani R; Rajgolikar G; Nunes J; Zapolnik K; Wasmuth R; Mo X; Byrd JC; Lee DA; Muthusamy N; Vasu S
    Cytotherapy; 2020 Jul; 22(7):369-376. PubMed ID: 32303428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia.
    Romee R; Rosario M; Berrien-Elliott MM; Wagner JA; Jewell BA; Schappe T; Leong JW; Abdel-Latif S; Schneider SE; Willey S; Neal CC; Yu L; Oh ST; Lee YS; Mulder A; Claas F; Cooper MA; Fehniger TA
    Sci Transl Med; 2016 Sep; 8(357):357ra123. PubMed ID: 27655849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TIPE2 is a checkpoint of natural killer cell maturation and antitumor immunity.
    Bi J; Cheng C; Zheng C; Huang C; Zheng X; Wan X; Chen YH; Tian Z; Sun H
    Sci Adv; 2021 Sep; 7(38):eabi6515. PubMed ID: 34524845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Inverse Relationship Between c-Kit/CD117 and mTOR Confers NK Cell Dysregulation Late After Severe Injury.
    Bösken B; Hepner-Schefczyk M; Vonderhagen S; Dudda M; Flohé SB
    Front Immunol; 2020; 11():1200. PubMed ID: 32670280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity.
    Van den Bergh J; Willemen Y; Lion E; Van Acker H; De Reu H; Anguille S; Goossens H; Berneman Z; Van Tendeloo V; Smits E
    Oncotarget; 2015 Dec; 6(42):44123-33. PubMed ID: 26675759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor activator for NF-κB ligand in acute myeloid leukemia: expression, function, and modulation of NK cell immunosurveillance.
    Schmiedel BJ; Nuebling T; Steinbacher J; Malinovska A; Wende CM; Azuma M; Schneider P; Grosse-Hovest L; Salih HR
    J Immunol; 2013 Jan; 190(2):821-31. PubMed ID: 23241893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway.
    Viel S; Marçais A; Guimaraes FS; Loftus R; Rabilloud J; Grau M; Degouve S; Djebali S; Sanlaville A; Charrier E; Bienvenu J; Marie JC; Caux C; Marvel J; Town L; Huntington ND; Bartholin L; Finlay D; Smyth MJ; Walzer T
    Sci Signal; 2016 Feb; 9(415):ra19. PubMed ID: 26884601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-29b mediates altered innate immune development in acute leukemia.
    Mundy-Bosse BL; Scoville SD; Chen L; McConnell K; Mao HC; Ahmed EH; Zorko N; Harvey S; Cole J; Zhang X; Costinean S; Croce CM; Larkin K; Byrd JC; Vasu S; Blum W; Yu J; Freud AG; Caligiuri MA
    J Clin Invest; 2016 Dec; 126(12):4404-4416. PubMed ID: 27775550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of CD158 and NKG2A Inhibitory Receptors and Underexpression of NKG2D and NKp46 Activating Receptors on NK Cells in Acute Myeloid Leukemia.
    Sandoval-Borrego D; Moreno-Lafont MC; Vazquez-Sanchez EA; Gutierrez-Hoya A; López-Santiago R; Montiel-Cervantes LA; Ramírez-Saldaña M; Vela-Ojeda J
    Arch Med Res; 2016 Jan; 47(1):55-64. PubMed ID: 26876298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function--implications for the adoptive immunotherapy of leukaemia.
    Orleans-Lindsay JK; Barber LD; Prentice HG; Lowdell MW
    Clin Exp Immunol; 2001 Dec; 126(3):403-11. PubMed ID: 11737054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Activity against Acute Myeloid Leukemia with Chimeric Antigen Receptor (CAR)-NK-92 Cells Designed to Target CD123.
    Morgan MA; Kloos A; Lenz D; Kattre N; Nowak J; Bentele M; Keisker M; Dahlke J; Zimmermann K; Sauer M; Heuser M; Schambach A
    Viruses; 2021 Jul; 13(7):. PubMed ID: 34372571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.