These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 34975984)
1. Conservation and Diversity in Gibberellin-Mediated Transcriptional Responses Among Host Plants Forming Distinct Arbuscular Mycorrhizal Morphotypes. Tominaga T; Miura C; Sumigawa Y; Hirose Y; Yamaguchi K; Shigenobu S; Mine A; Kaminaka H Front Plant Sci; 2021; 12():795695. PubMed ID: 34975984 [TBL] [Abstract][Full Text] [Related]
2. The effects of gibberellin on the expression of symbiosis-related genes in Tominaga T; Yamaguchi K; Shigenobu S; Yamato M; Kaminaka H Plant Signal Behav; 2020 Sep; 15(9):1784544. PubMed ID: 32594890 [TBL] [Abstract][Full Text] [Related]
3. Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. Tominaga T; Miura C; Takeda N; Kanno Y; Takemura Y; Seo M; Yamato M; Kaminaka H Plant Cell Physiol; 2020 Mar; 61(3):565-575. PubMed ID: 31790118 [TBL] [Abstract][Full Text] [Related]
4. Conserved and Diverse Transcriptional Reprogramming Triggered by the Establishment of Symbioses in Tomato Roots Forming Tominaga T; Yao L; Saito H; Kaminaka H Plants (Basel); 2022 Mar; 11(6):. PubMed ID: 35336627 [TBL] [Abstract][Full Text] [Related]
5. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715 [TBL] [Abstract][Full Text] [Related]
6. Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the establishment of the fungal microbiota in Lotus japonicus. Xue L; Almario J; Fabiańska I; Saridis G; Bucher M New Phytol; 2019 Oct; 224(1):409-420. PubMed ID: 31125425 [TBL] [Abstract][Full Text] [Related]
7. Gibberellin regulates infection and colonization of host roots by arbuscular mycorrhizal fungi. Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M Plant Signal Behav; 2015; 10(6):e1028706. PubMed ID: 26024424 [TBL] [Abstract][Full Text] [Related]
8. Monoterpene glucosides in Eustoma grandiflorum roots promote hyphal branching in arbuscular mycorrhizal fungi. Tominaga T; Ueno K; Saito H; Egusa M; Yamaguchi K; Shigenobu S; Kaminaka H Plant Physiol; 2023 Nov; 193(4):2677-2690. PubMed ID: 37655911 [TBL] [Abstract][Full Text] [Related]
9. Different roles of the phytohormone gibberellin in the wide-spread arbuscular mycorrhiza and in orchid mycorrhiza. Miura C; Tominaga T; Kaminaka H Curr Opin Plant Biol; 2024 Sep; 82():102627. PubMed ID: 39250880 [TBL] [Abstract][Full Text] [Related]
10. Isolation and phenotypic characterization of Lotus japonicus mutants specifically defective in arbuscular mycorrhizal formation. Kojima T; Saito K; Oba H; Yoshida Y; Terasawa J; Umehara Y; Suganuma N; Kawaguchi M; Ohtomo R Plant Cell Physiol; 2014 May; 55(5):928-41. PubMed ID: 24492255 [TBL] [Abstract][Full Text] [Related]
11. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. Handa Y; Nishide H; Takeda N; Suzuki Y; Kawaguchi M; Saito K Plant Cell Physiol; 2015 Aug; 56(8):1490-511. PubMed ID: 26009592 [TBL] [Abstract][Full Text] [Related]
12. Regulation of nitric oxide by phytoglobins in Lotus japonicus is involved in mycorrhizal symbiosis with Rhizophagus irregularis. Fukudome M; Uchiumi T Plant Sci; 2024 Mar; 340():111984. PubMed ID: 38220094 [TBL] [Abstract][Full Text] [Related]
13. A novel SCARECROW-LIKE3 transcription factor Xu Y; Liu F; Wu F; Zhao M; Zou R; Wu J; Li X Physiol Mol Biol Plants; 2022 Mar; 28(3):573-583. PubMed ID: 35465207 [TBL] [Abstract][Full Text] [Related]
14. ARBUSCULAR MYCORRHIZA-INDUCED KINASES AMK8 and AMK24 associate with the receptor-like kinase KINASE3 to regulate arbuscular mycorrhizal symbiosis in Lotus japonicus. Leng J; Wei X; Jin X; Wang L; Fan K; Zou K; Zheng Z; Saridis G; Zhao N; Zhou D; Duanmu D; Wang E; Cui H; Bucher M; Xue L Plant Cell; 2023 May; 35(6):2006-2026. PubMed ID: 36808553 [TBL] [Abstract][Full Text] [Related]
15. Wang Y; Zhou W; Wu J; Xie K; Li X Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076919 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504 [TBL] [Abstract][Full Text] [Related]
17. Common symbiosis genes CERBERUS and NSP1 provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses in Lotus japonicus. Nagae M; Takeda N; Kawaguchi M Plant Signal Behav; 2014; 9(3):e28544. PubMed ID: 24705023 [TBL] [Abstract][Full Text] [Related]
18. Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicus-Glomus intraradices mycorrhizal symbiosis. Vijayakumar V; Liebisch G; Buer B; Xue L; Gerlach N; Blau S; Schmitz J; Bucher M Plant Cell Environ; 2016 Feb; 39(2):393-415. PubMed ID: 26297195 [TBL] [Abstract][Full Text] [Related]
19. Zinc finger protein LjRSDL regulates arbuscule degeneration of arbuscular mycorrhizal fungi in Lotus japonicus. Xu Y; Liu F; Wu F; Zou R; Zhao M; Wu J; Cheng B; Li X Plant Physiol; 2024 Sep; ():. PubMed ID: 39268874 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic analysis reveals the possible roles of sugar metabolism and export for positive mycorrhizal growth responses in soybean. Zhao S; Chen A; Chen C; Li C; Xia R; Wang X Physiol Plant; 2019 Jul; 166(3):712-728. PubMed ID: 30288747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]