These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 34976015)

  • 1. Integration of Transcriptome and Methylome Analyses Provides Insight Into the Pathway of Floral Scent Biosynthesis in
    Yuan X; Ma K; Zhang M; Wang J; Zhang Q
    Front Genet; 2021; 12():779557. PubMed ID: 34976015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Transcriptome Reveals Benzenoid Biosynthesis Regulation as Inducer of Floral Scent in the Woody Plant
    Zhao K; Yang W; Zhou Y; Zhang J; Li Y; Ahmad S; Zhang Q
    Front Plant Sci; 2017; 8():319. PubMed ID: 28344586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome analysis linked to key volatiles reveals molecular mechanisms of aroma compound biosynthesis in Prunus mume.
    Xiujun W; Zhenqi S; Yujing T; Kaifeng M; Qingwei L
    BMC Plant Biol; 2022 Aug; 22(1):395. PubMed ID: 35945501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion of
    Bao F; Ding A; Zhang T; Luo L; Wang J; Cheng T; Zhang Q
    Hortic Res; 2019; 6():24. PubMed ID: 30729014
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolic, Enzymatic Activity, and Transcriptomic Analysis Reveals the Mechanism Underlying the Lack of Characteristic Floral Scent in Apricot Mei Varieties.
    Bao F; Zhang T; Ding A; Ding A; Yang W; Wang J; Cheng T; Zhang Q
    Front Plant Sci; 2020; 11():574982. PubMed ID: 33193512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and metabolic insights into floral scent biosynthesis during flowering in
    Du Z; Jin Y; Wang W; Xia K; Chen Z
    Front Plant Sci; 2022; 13():1030492. PubMed ID: 36518498
    [No Abstract]   [Full Text] [Related]  

  • 7. Integrating Genome-Wide Association Analysis With Transcriptome Sequencing to Identify Candidate Genes Related to Blooming Time in
    Zhang M; Yang Q; Yuan X; Yan X; Wang J; Cheng T; Zhang Q
    Front Plant Sci; 2021; 12():690841. PubMed ID: 34335659
    [No Abstract]   [Full Text] [Related]  

  • 8. A Comparative Analysis of Floral Scent Compounds in Intraspecific Cultivars of
    Zhang T; Bao F; Yang Y; Hu L; Ding A; Ding A; Wang J; Cheng T; Zhang Q
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31905838
    [No Abstract]   [Full Text] [Related]  

  • 9. Substantial Epigenetic Variation Causing Flower Color Chimerism in the Ornamental Tree
    Ma KF; Zhang QX; Cheng TR; Yan XL; Pan HT; Wang J
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30087265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium.
    Yue Y; Yu R; Fan Y
    BMC Genomics; 2015 Jun; 16(1):470. PubMed ID: 26084652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Analysis of Endogenous Volatile Compounds, Transcriptome, and Enzyme Activity Reveals
    Zhang T; Bao F; Ding A; Yang Y; Cheng T; Wang J; Zhang Q
    Front Plant Sci; 2022; 13():820742. PubMed ID: 35251090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinated and High-Level Expression of Biosynthetic Pathway Genes Is Responsible for the Production of a Major Floral Scent Compound Methyl Benzoate in
    Yue Y; Wang L; Yu R; Chen F; He J; Li X; Yu Y; Fan Y
    Front Plant Sci; 2021; 12():650582. PubMed ID: 33897740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Headspace Volatiles and Endogenous Extracts of
    Wang X; Wu Y; Zhu H; Zhang H; Xu J; Fu Q; Bao M; Zhang J
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885838
    [No Abstract]   [Full Text] [Related]  

  • 14. RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes.
    Ramya M; Park PH; Chuang YC; Kwon OK; An HR; Park PM; Baek YS; Kang BC; Tsai WC; Chen HH
    BMC Plant Biol; 2019 Aug; 19(1):337. PubMed ID: 31375064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Candidate genes screening based on phenotypic observation and transcriptome analysis for double flower of Prunus mume.
    Zhu H; Shi Y; Zhang J; Bao M; Zhang J
    BMC Plant Biol; 2022 Oct; 22(1):499. PubMed ID: 36284302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrative metabolome and transcriptome analyses reveal the molecular mechanism underlying variation in floral scent during flower development of
    Zhu L; Liao J; Liu Y; Zhou C; Wang X; Hu Z; Huang B; Zhang J
    Front Plant Sci; 2022; 13():919151. PubMed ID: 36733600
    [No Abstract]   [Full Text] [Related]  

  • 17. Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented
    Hu Z; Tang B; Wu Q; Zheng J; Leng P; Zhang K
    Front Plant Sci; 2017; 8():1351. PubMed ID: 28824685
    [No Abstract]   [Full Text] [Related]  

  • 18. Genome-wide identification, characterization, expression and enzyme activity analysis of coniferyl alcohol acetyltransferase genes involved in eugenol biosynthesis in Prunus mume.
    Zhang T; Huo T; Ding A; Hao R; Wang J; Cheng T; Bao F; Zhang Q
    PLoS One; 2019; 14(10):e0223974. PubMed ID: 31618262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated Transcriptome and Metabolome Analysis of Color Change and Low-Temperature Response during Flowering of
    Dong B; Zheng Z; Zhong S; Ye Y; Wang Y; Yang L; Xiao Z; Fang Q; Zhao H
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated transcriptome and small RNA sequencing in revealing miRNA-mediated regulatory network of floral bud break in
    Zhang M; Cheng W; Yuan X; Wang J; Cheng T; Zhang Q
    Front Plant Sci; 2022; 13():931454. PubMed ID: 35937373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.