These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 34976305)
1. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Vicar T; Gumulec J; Kolar R; Kopecna O; Pagacova E; Falkova I; Falk M Comput Struct Biotechnol J; 2021; 19():6465-6480. PubMed ID: 34976305 [TBL] [Abstract][Full Text] [Related]
2. Biodosimetry of Low Dose Ionizing Radiation Using DNA Repair Foci in Human Lymphocytes. Jakl L; Marková E; Koláriková L; Belyaev I Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947954 [TBL] [Abstract][Full Text] [Related]
3. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy. Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200 [TBL] [Abstract][Full Text] [Related]
4. Validation of JCountPro software for efficient assessment of ionizing radiation-induced foci in human lymphocytes. Jakl L; Lobachevsky P; Vokálová L; Durdík M; Marková E; Belyaev I Int J Radiat Biol; 2016 Dec; 92(12):766-773. PubMed ID: 27648492 [TBL] [Abstract][Full Text] [Related]
5. Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells. Dobešová L; Gier T; Kopečná O; Pagáčová E; Vičar T; Bestvater F; Toufar J; Bačíková A; Kopel P; Fedr R; Hildenbrand G; Falková I; Falk M; Hausmann M Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057061 [No Abstract] [Full Text] [Related]
6. Imaging flow cytometry as a sensitive tool to detect low-dose-induced DNA damage by analyzing 53BP1 and γH2AX foci in human lymphocytes. Durdik M; Kosik P; Gursky J; Vokalova L; Markova E; Belyaev I Cytometry A; 2015 Dec; 87(12):1070-8. PubMed ID: 26243567 [TBL] [Abstract][Full Text] [Related]
7. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Falk M; Hausmann M Cancers (Basel); 2020 Dec; 13(1):. PubMed ID: 33374540 [TBL] [Abstract][Full Text] [Related]
8. Transmission of persistent ionizing radiation-induced foci through cell division in human primary cells. Vaurijoux A; Voisin P; Freneau A; Barquinero JF; Gruel G Mutat Res; 2017 Mar; 797-799():15-25. PubMed ID: 28340407 [TBL] [Abstract][Full Text] [Related]
9. Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. Hausmann M; Falk M; Neitzel C; Hofmann A; Biswas A; Gier T; Falkova I; Heermann DW; Hildenbrand G Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807337 [TBL] [Abstract][Full Text] [Related]
10. In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. Lassmann M; Hänscheid H; Gassen D; Biko J; Meineke V; Reiners C; Scherthan H J Nucl Med; 2010 Aug; 51(8):1318-25. PubMed ID: 20660387 [TBL] [Abstract][Full Text] [Related]
11. Smad7 foci are present in micronuclei induced by heavy particle radiation. Wang M; Saha J; Cucinotta FA Mutat Res; 2013 Aug; 756(1-2):108-14. PubMed ID: 23643526 [TBL] [Abstract][Full Text] [Related]
12. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Noon AT; Shibata A; Rief N; Löbrich M; Stewart GS; Jeggo PA; Goodarzi AA Nat Cell Biol; 2010 Feb; 12(2):177-84. PubMed ID: 20081839 [TBL] [Abstract][Full Text] [Related]
13. Establishment of Chaurasia RK; Shirsath KB; Desai UN; Bhat NN; Sapra BK Front Public Health; 2022; 10():845200. PubMed ID: 36003625 [TBL] [Abstract][Full Text] [Related]
14. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. Zahnreich S; Weber B; Rösch G; Schindler D; Schmidberger H DNA Repair (Amst); 2020 Dec; 96():102992. PubMed ID: 33069004 [TBL] [Abstract][Full Text] [Related]
15. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry. Belyaev IY Mutat Res; 2010; 704(1-3):132-41. PubMed ID: 20096808 [TBL] [Abstract][Full Text] [Related]
16. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. Adams BR; Golding SE; Rao RR; Valerie K PLoS One; 2010 Apr; 5(4):e10001. PubMed ID: 20368801 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. Marková E; Schultz N; Belyaev IY Int J Radiat Biol; 2007 May; 83(5):319-29. PubMed ID: 17457757 [TBL] [Abstract][Full Text] [Related]
18. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Franken NA; Hovingh S; Ten Cate R; Krawczyk P; Stap J; Hoebe R; Aten J; Barendsen GW Oncol Rep; 2012 Mar; 27(3):769-74. PubMed ID: 22200791 [TBL] [Abstract][Full Text] [Related]
19. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation. van Oorschot B; Hovingh S; Dekker A; Stalpers LJ; Franken NA Radiat Res; 2016 Feb; 185(2):190-8. PubMed ID: 26789702 [TBL] [Abstract][Full Text] [Related]
20. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Rübe CE; Grudzenski S; Kühne M; Dong X; Rief N; Löbrich M; Rübe C Clin Cancer Res; 2008 Oct; 14(20):6546-55. PubMed ID: 18927295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]