These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34976982)

  • 1. Silicon Nitride, a Bioceramic for Bone Tissue Engineering: A Reinforced Cryogel System With Antibiofilm and Osteogenic Effects.
    Lee SS; Laganenka L; Du X; Hardt WD; Ferguson SJ
    Front Bioeng Biotechnol; 2021; 9():794586. PubMed ID: 34976982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the application and biological mechanism of silicon nitride osteogenic properties: a review.
    Liu Z; Wang R; Liu W; Liu Y; Feng X; Zhao F; Chen P; Shao L; Rong M
    Biomater Sci; 2023 Oct; 11(21):7003-7017. PubMed ID: 37718623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite or Fluorapatite-Which Bioceramic Is Better as a Base for the Production of Bone Scaffold?-A Comprehensive Comparative Study.
    Kazimierczak P; Wessely-Szponder J; Palka K; Barylyak A; Zinchenko V; Przekora A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon Nitride as a Biomedical Material: An Overview.
    Du X; Lee SS; Blugan G; Ferguson SJ
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Biomimetic Macroporous Hybrid Scaffold with Sustained Drug Delivery for Enhanced Bone Regeneration.
    Lee SS; Santschi M; Ferguson SJ
    Biomacromolecules; 2021 Jun; 22(6):2460-2471. PubMed ID: 33971092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed PEEK/Silicon Nitride Scaffolds with a Triply Periodic Minimal Surface Structure for Spinal Fusion Implants.
    Du X; Ronayne S; Lee SS; Hendry J; Hoxworth D; Bock R; Ferguson SJ
    ACS Appl Bio Mater; 2023 Aug; 6(8):3319-3329. PubMed ID: 37561906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive in vitro comparison of cellular and osteogenic response to alternative biomaterials for spinal implants.
    Lee SS; Huber S; Ferguson SJ
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112251. PubMed ID: 34225890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustained release silicon from 3D bioprinting scaffold using silk/gelatin inks to promote osteogenesis.
    Yunsheng D; Hui X; Jie W; Tingting Y; Naiqi K; Jiaxing H; Wei C; Yufei L; Qiang Y; Shufang W
    Int J Biol Macromol; 2023 Apr; 234():123659. PubMed ID: 36796557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 3D Printed Bone Tissue Engineering Scaffold Composed of Alginate Dialdehyde-Gelatine Reinforced by Lysozyme Loaded Cerium Doped Mesoporous Silica-Calcia Nanoparticles.
    Monavari M; Medhekar R; Nawaz Q; Monavari M; Fuentes-Chandía M; Homaeigohar S; Boccaccini AR
    Macromol Biosci; 2022 Sep; 22(9):e2200113. PubMed ID: 35795888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H; Hwangbo H; Koo Y; Kim G
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative study on silicon nitride, titanium and polyether ether ketone on mouse pre-osteoblast cells.
    Ahuja N; Awad KR; Brotto M; Aswath PB; Varanasi V
    Med Devices Sens; 2021 Feb; 4(1):. PubMed ID: 35765350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biomimicking Polymeric Cryogel Scaffold for Repair of Critical-Sized Cranial Defect in a Rat Model.
    Liu C; Lin C; Feng X; Wu Z; Lin G; Quan C; Chen B; Zhang C
    Tissue Eng Part A; 2019 Dec; 25(23-24):1591-1604. PubMed ID: 30950322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration.
    Wang Y; Yuan Z; Pang Y; Zhang D; Li G; Zhang X; Yu Y; Yang X; Cai Q
    ACS Appl Mater Interfaces; 2023 May; 15(17):20661-20676. PubMed ID: 37083252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clarifying the Tooth-Derived Stem Cells Behavior in a 3D Biomimetic Scaffold for Bone Tissue Engineering Applications.
    Salgado CL; Barrias CC; Monteiro FJM
    Front Bioeng Biotechnol; 2020; 8():724. PubMed ID: 32671055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions.
    Xing M; Wang X; Wang E; Gao L; Chang J
    Acta Biomater; 2018 May; 72():381-395. PubMed ID: 29627679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.