BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34977428)

  • 1. Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties.
    Liverani L; Liguori A; Zezza P; Gualandi C; Toselli M; Boccaccini AR; Focarete ML
    Bioact Mater; 2022 May; 11():230-239. PubMed ID: 34977428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications.
    Luginina M; Schuhladen K; Orrú R; Cao G; Boccaccini AR; Liverani L
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32438673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents.
    Liverani L; Lacina J; Roether JA; Boccardi E; Killian MS; Schmuki P; Schubert DW; Boccaccini AR
    Bioact Mater; 2018 Mar; 3(1):55-63. PubMed ID: 29744442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials.
    Jo JH; Lee EJ; Shin DS; Kim HE; Kim HW; Koh YH; Jang JH
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):213-20. PubMed ID: 19422050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of Calcium Containing Mesoporous (MCM-41-Type) Particles in Electrospun PCL Fibers by Using Benign Solvents.
    Liverani L; Boccardi E; Beltrán AM; Boccaccini AR
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications.
    Piatti E; Miola M; Liverani L; Verné E; Boccaccini AR
    J Biomed Mater Res A; 2023 Nov; 111(11):1692-1709. PubMed ID: 37300320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a bioactive glass-polymer composite for wound healing applications.
    Moura D; Souza MT; Liverani L; Rella G; Luz GM; Mano JF; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():224-232. PubMed ID: 28482521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials.
    Allo BA; Rizkalla AS; Mequanint K
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Generation of Electrospun Fibers Containing Bioactive Glass Particles for Wound Healing.
    Sergi R; Cannillo V; Boccaccini AR; Liverani L
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Star poly(ε-caprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity.
    Bala Balakrishnan P; Gardella L; Forouharshad M; Pellegrino T; Monticelli O
    Colloids Surf B Biointerfaces; 2018 Jan; 161():488-496. PubMed ID: 29128835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.
    Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ
    Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactivity improvement of poly(epsilon-caprolactone) membrane with the addition of nanofibrous bioactive glass.
    Lee HH; Yu HS; Jang JH; Kim HW
    Acta Biomater; 2008 May; 4(3):622-9. PubMed ID: 18171636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (
    Unalan I; Slavik B; Buettner A; Goldmann WH; Frank G; Boccaccini AR
    Front Bioeng Biotechnol; 2019; 7():346. PubMed ID: 32039166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable mesoporous bioactive glass nanospheres for drug delivery and bone tissue regeneration.
    Wang X; Li W
    Nanotechnology; 2016 Jun; 27(22):225102. PubMed ID: 27102805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric.
    Seol YJ; Kim KH; Kim IA; Rhee SH
    J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration.
    Yin HM; Li X; Wang P; Ren Y; Liu W; Xu JZ; Li JH; Li ZM
    J Biomed Mater Res A; 2019 Mar; 107(3):654-662. PubMed ID: 30474348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.
    Wang S; Li Y; Zhao R; Jin T; Zhang L; Li X
    Int J Biol Macromol; 2017 Nov; 104(Pt A):708-715. PubMed ID: 28645765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Production of Poly(Epsilon-Caprolactone) Fibers by Electrospinning Using Benign Solvents.
    Liverani L; Boccaccini AR
    Nanomaterials (Basel); 2016 Apr; 6(4):. PubMed ID: 28335202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.