BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34977482)

  • 1. Adaptation of mammals to hypoxia.
    Li F; Qiao Z; Duan Q; Nevo E
    Animal Model Exp Med; 2021 Dec; 4(4):311-318. PubMed ID: 34977482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Genetics of Hypoxia and Cold Tolerance in Mammals.
    Zhu K; Ge D; Wen Z; Xia L; Yang Q
    J Mol Evol; 2018 Dec; 86(9):618-634. PubMed ID: 30327830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic plasticity, genetic assimilation, and genetic compensation in hypoxia adaptation of high-altitude vertebrates.
    Storz JF; Scott GR
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110865. PubMed ID: 33301891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of breathing and the circulation in high-altitude mammals and birds.
    Ivy CM; Scott GR
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Aug; 186():66-74. PubMed ID: 25446936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates.
    Storz JF; Scott GR; Cheviron ZA
    J Exp Biol; 2010 Dec; 213(Pt 24):4125-36. PubMed ID: 21112992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altitude acclimatization, hemoglobin-oxygen affinity, and circulatory oxygen transport in hypoxia.
    Storz JF; Bautista NM
    Mol Aspects Med; 2022 Apr; 84():101052. PubMed ID: 34879970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia Inducible Factor pathway proteins in high-altitude mammals.
    Lee FS
    Trends Biochem Sci; 2024 Jan; 49(1):79-92. PubMed ID: 38036336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hypoxia adaptation of small mammals to plateau and underground burrow conditions.
    Li M; Pan D; Sun H; Zhang L; Cheng H; Shao T; Wang Z
    Animal Model Exp Med; 2021 Dec; 4(4):319-328. PubMed ID: 34977483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Newest research progress in hypoxia genetic adaptation to high altitude].
    Zhou F; Sun X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):711-5. PubMed ID: 20649050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic cold exposure induces mitochondrial plasticity in deer mice native to high altitudes.
    Mahalingam S; Cheviron ZA; Storz JF; McClelland GB; Scott GR
    J Physiol; 2020 Dec; 598(23):5411-5426. PubMed ID: 32886797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body temperature regulation during acclimation to cold and hypoxia in rats.
    Cadena V; Tattersall GJ
    J Therm Biol; 2014 Dec; 46():56-64. PubMed ID: 25455941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and phenotypic analysis of the Collas.
    Eichstaedt CA; Antão T; Pagani L; Cardona A; Kivisild T; Mormina M
    PLoS One; 2014; 9(3):e93314. PubMed ID: 24686296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia.
    Peng Y; Cui C; He Y; Ouzhuluobu ; Zhang H; Yang D; Zhang Q; Bianbazhuoma ; Yang L; He Y; Xiang K; Zhang X; Bhandari S; Shi P; Yangla ; Dejiquzong ; Baimakangzhuo ; Duojizhuoma ; Pan Y; Cirenyangji ; Baimayangji ; Gonggalanzi ; Bai C; Bianba ; Basang ; Ciwangsangbu ; Xu S; Chen H; Liu S; Wu T; Qi X; Su B
    Mol Biol Evol; 2017 Apr; 34(4):818-830. PubMed ID: 28096303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolved changes in the intracellular distribution and physiology of muscle mitochondria in high-altitude native deer mice.
    Mahalingam S; McClelland GB; Scott GR
    J Physiol; 2017 Jul; 595(14):4785-4801. PubMed ID: 28418073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.
    Ji LD; Qiu YQ; Xu J; Irwin DM; Tam SC; Tang NL; Zhang YP
    Mol Biol Evol; 2012 Nov; 29(11):3359-70. PubMed ID: 22628534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A Review of High-altitude Hypoxia Adaptation and Hypoxic Solid Tumor].
    Wu QS; Liu PS; Yang CP; Chen YB
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jan; 52(1):50-56. PubMed ID: 33474889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanisms of High-Altitude Acclimatization.
    Mallet RT; Burtscher J; Pialoux V; Pasha Q; Ahmad Y; Millet GP; Burtscher M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide adaptive evolution to underground stresses in subterranean mammals: Hypoxia adaption, immunity promotion, and sensory specialization.
    Jiang M; Shi L; Li X; Dong Q; Sun H; Du Y; Zhang Y; Shao T; Cheng H; Chen W; Wang Z
    Ecol Evol; 2020 Jul; 10(14):7377-7388. PubMed ID: 32760535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue.
    Li M; Zhao C
    Sci China C Life Sci; 2009 Mar; 52(3):284-95. PubMed ID: 19294354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H
    Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.