These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34977688)

  • 1. Protocol for synthesis and characterization of ePTFE reinforced, sulfonated polyphenylene in the application to proton exchange membrane fuel cells.
    Long Z; Miyatake K
    STAR Protoc; 2022 Mar; 3(1):101049. PubMed ID: 34977688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ePTFE reinforced, sulfonated aromatic polymer membranes enable durable, high-temperature operable PEMFCs.
    Long Z; Miyatake K
    iScience; 2021 Sep; 24(9):102962. PubMed ID: 34458706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforced Polyphenylene Ionomer Membranes Exhibiting High Fuel Cell Performance and Mechanical Durability.
    Miyake J; Watanabe T; Shintani H; Sugawara Y; Uchida M; Miyatake K
    ACS Mater Au; 2021 Sep; 1(1):81-88. PubMed ID: 36855620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.
    Hou H; Di Vona ML; Knauth P
    ChemSusChem; 2011 Nov; 4(11):1526-36. PubMed ID: 22006846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Performance Fuel Cell Operable at 120 °C Using Polyphenlyene Ionomer Membranes with Improved Interfacial Compatibility.
    Long Z; Miyatake K
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15366-15372. PubMed ID: 33755439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercalated Poly (2-Acrylamido-2-methyl-1-propanesulfonic Acid) into Sulfonated Poly (1,4-Phenylene ether-ether-sulfone) Based Proton Exchange Membrane: Improved Ionic Conductivity.
    Manohar M; Sharma PP; Kim D
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33396503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement effect in tandemly sulfonated, partially fluorinated polyphenylene PEMs for fuel cells.
    Guo L; Masuda A; Miyatake K
    RSC Adv; 2023 Apr; 13(16):11225-11233. PubMed ID: 37056974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
    Miyake J; Taki R; Mochizuki T; Shimizu R; Akiyama R; Uchida M; Miyatake K
    Sci Adv; 2017 Oct; 3(10):eaao0476. PubMed ID: 29075671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stable, Low Gas Crossover, Proton-Conducting Phenylated Polyphenylenes.
    Adamski M; Skalski TJG; Britton B; Peckham TJ; Metzler L; Holdcroft S
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9058-9061. PubMed ID: 28609604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs).
    Ebrahimi M; Kujawski W; Fatyeyeva K; Kujawa J
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitin nanowhisker-supported sulfonated poly(ether sulfone) proton exchange for fuel cell applications.
    Zhang C; Zhuang X; Li X; Wang W; Cheng B; Kang W; Cai Z; Li M
    Carbohydr Polym; 2016 Apr; 140():195-201. PubMed ID: 26876844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric Field-Assisted Filling of Sulfonated Polymers in ePTFE Backing Material for Fuel Cell.
    Hsieh TL; Guo WH; Chang MY; Huang WY; Wen HY
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Chitosan-Based Polymers as Proton Exchange Membranes and Roles of Chitosan-Supported Ionic Liquids.
    Rosli NAH; Loh KS; Wong WY; Yunus RM; Lee TK; Ahmad A; Chong ST
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Hydrolytic and Mechanical Stability of Sulfonated Aromatic Proton Exchange Membranes Reinforced by Electrospun PPSU Fibers.
    Pasquini L; Sauvan M; Narducci R; Sgreccia E; Knauth P; Di Vona ML
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double-Layer ePTFE-Reinforced Membrane Electrode Assemblies Prepared by a Reverse Membrane Deposition Process for High-Performance and Durable Proton Exchange Membrane Fuel Cells.
    Liu L; Fu Z; Xing Y; Li Y; Zhou X; Li Z; Li H
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30281-30293. PubMed ID: 37331008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterization of a Novel Sulfonated Titanium Oxide Incorporated Chitosan Nanocomposite Membranes for Fuel Cell Application.
    Ahmed S; Arshad T; Zada A; Afzal A; Khan M; Hussain A; Hassan M; Ali M; Xu S
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34204185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.
    Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V
    ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.
    Lim Y; Seo D; Lee S; Hossain MA; Lim J; Lee S; Hong T; Kim W
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7948-53. PubMed ID: 25942900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imparting High Proton Conductivity to Nafion® Tuned by Acidic Chitosan for Low-Temperature Proton Exchange Membrane Fuel Cell Applications.
    Kim H; Kabir MDL; Choi SJ
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6625-6629. PubMed ID: 31027001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.
    Xu F; Mu S
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1169-80. PubMed ID: 24749420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.