These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34977859)

  • 1. Targeted Gene Knockouts by Protoplast Transformation in the Moss
    Zhu L
    Front Genome Ed; 2021; 3():719087. PubMed ID: 34977859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens.
    Collonnier C; Epert A; Mara K; Maclot F; Guyon-Debast A; Charlot F; White C; Schaefer DG; Nogué F
    Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms.
    Maronova M; Kalyna M
    Methods Mol Biol; 2016; 1398():221-34. PubMed ID: 26867627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 Genome Editing in the Moss Physcomitrium (Formerly Physcomitrella) patens.
    Wu SZ; Ryken SE; Bezanilla M
    Curr Protoc; 2023 Apr; 3(4):e725. PubMed ID: 37021953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and modular CRISPR-Cas9 vector system for
    Mallett DR; Chang M; Cheng X; Bezanilla M
    Plant Direct; 2019 Sep; 3(9):e00168. PubMed ID: 31523744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved and highly standardised transformation procedure allows efficient production of single and multiple targeted gene-knockouts in a moss, Physcomitrella patens.
    Hohe A; Egener T; Lucht JM; Holtorf H; Reinhard C; Schween G; Reski R
    Curr Genet; 2004 Jan; 44(6):339-47. PubMed ID: 14586556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in
    Lopez-Obando M; Hoffmann B; Géry C; Guyon-Debast A; Téoulé E; Rameau C; Bonhomme S; Nogué F
    G3 (Bethesda); 2016 Nov; 6(11):3647-3653. PubMed ID: 27613750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physcomitrium patens Protoplasting and Protoplast Transfection.
    Charlot F; Goudounet G; Nogué F; Perroud PF
    Methods Mol Biol; 2022; 2464():3-19. PubMed ID: 35258821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens.
    Mara K; Charlot F; Guyon-Debast A; Schaefer DG; Collonnier C; Grelon M; Nogué F
    New Phytol; 2019 May; 222(3):1380-1391. PubMed ID: 30636294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameters determining the efficiency of gene targeting in the moss Physcomitrella patens.
    Kamisugi Y; Cuming AC; Cove DJ
    Nucleic Acids Res; 2005 Nov; 33(19):e173. PubMed ID: 16282584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid Transformation in Physcomitrium (Physcomitrella) patens: An Update.
    Sugita M
    Methods Mol Biol; 2021; 2317():321-331. PubMed ID: 34028779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library.
    Egener T; Granado J; Guitton MC; Hohe A; Holtorf H; Lucht JM; Rensing SA; Schlink K; Schulte J; Schween G; Zimmermann S; Duwenig E; Rak B; Reski R
    BMC Plant Biol; 2002 Jul; 2():6. PubMed ID: 12123528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient polyethylene glycol (PEG) mediated transformation of the moss Physcomitrella patens.
    Liu YC; Vidali L
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient gene targeting in the moss Physcomitrella patens.
    Schaefer DG; Zrÿd JP
    Plant J; 1997 Jun; 11(6):1195-206. PubMed ID: 9225463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens.
    Trogu S; Ermert AL; Stahl F; Nogué F; Gans T; Hughes J
    Plant Mol Biol; 2021 Nov; 107(4-5):327-336. PubMed ID: 33346897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recombination products suggest the frequent occurrence of aberrant gene replacement in the moss Physcomitrella patens.
    Wendeler E; Zobell O; Chrost B; Reiss B
    Plant J; 2015 Feb; 81(4):548-58. PubMed ID: 25557140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants.
    Wang X; Qi M; Li J; Ji Z; Hu Y; Bao F; Mahalingam R; He Y
    J Exp Bot; 2014 May; 65(8):2093-106. PubMed ID: 24700621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knocking Out the Wall: Revised Protocols for Gene Targeting in Physcomitrella patens.
    Roberts AW; Dimos CS; Budziszek MJ; Goss CA; Lai V; Chaves AM
    Methods Mol Biol; 2020; 2149():125-144. PubMed ID: 32617933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens.
    Schaefer DG; Delacote F; Charlot F; Vrielynck N; Guyon-Debast A; Le Guin S; Neuhaus JM; Doutriaux MP; Nogué F
    DNA Repair (Amst); 2010 May; 9(5):526-33. PubMed ID: 20189889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration.
    Kamisugi Y; Schlink K; Rensing SA; Schween G; von Stackelberg M; Cuming AC; Reski R; Cove DJ
    Nucleic Acids Res; 2006; 34(21):6205-14. PubMed ID: 17090599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.