These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34977976)

  • 1. PlantRep: a database of plant repetitive elements.
    Luo X; Chen S; Zhang Y
    Plant Cell Rep; 2022 Apr; 41(4):1163-1166. PubMed ID: 34977976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repbase Update, a database of eukaryotic repetitive elements.
    Jurka J; Kapitonov VV; Pavlicek A; Klonowski P; Kohany O; Walichiewicz J
    Cytogenet Genome Res; 2005; 110(1-4):462-7. PubMed ID: 16093699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes.
    R Lorenzetti AP; A de Antonio GY; Paschoal AR; Domingues DS
    Funct Integr Genomics; 2016 May; 16(3):235-42. PubMed ID: 26887375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presidential address. Transposable elements, epigenetics, and genome evolution.
    Fedoroff NV
    Science; 2012 Nov; 338(6108):758-67. PubMed ID: 23145453
    [No Abstract]   [Full Text] [Related]  

  • 5. Plant transposable elements and the genome.
    Flavell AJ; Pearce SR; Kumar A
    Curr Opin Genet Dev; 1994 Dec; 4(6):838-44. PubMed ID: 7888753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions.
    Cai Z; Guisinger M; Kim HG; Ruck E; Blazier JC; McMurtry V; Kuehl JV; Boore J; Jansen RK
    J Mol Evol; 2008 Dec; 67(6):696-704. PubMed ID: 19018585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep investigation of Arabidopsis thaliana junk DNA reveals a continuum between repetitive elements and genomic dark matter.
    Maumus F; Quesneville H
    PLoS One; 2014; 9(4):e94101. PubMed ID: 24709859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat.
    Sehgal SK; Li W; Rabinowicz PD; Chan A; Simková H; Doležel J; Gill BS
    BMC Plant Biol; 2012 May; 12():64. PubMed ID: 22559868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folbos, a new foldback element in rice.
    Daskalova SM; Scott NW; Elliott MC
    Genes Genet Syst; 2005 Apr; 80(2):141-5. PubMed ID: 16172527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Special Issue: Repetitive DNA Sequences.
    Lower SE; Dion-Côté AM; Clark AG; Barbash DA
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31698818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA; Wise RP
    Plant Physiol; 2008 Jan; 146(1):45-59. PubMed ID: 18032588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-MITE: a database for plant miniature inverted-repeat transposable elements.
    Chen J; Hu Q; Zhang Y; Lu C; Kuang H
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D1176-81. PubMed ID: 24174541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome.
    Gebre YG; Bertolini E; Pè ME; Zuccolo A
    BMC Plant Biol; 2016 Feb; 16():39. PubMed ID: 26833063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and comparative analysis of transposable elements from low coverage genomic sequence data in Asparagales.
    Hertweck KL
    Genome; 2013 Sep; 56(9):487-94. PubMed ID: 24168669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 21st century view of evolution: genome system architecture, repetitive DNA, and natural genetic engineering.
    Shapiro JA
    Gene; 2005 Jan; 345(1):91-100. PubMed ID: 15716117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
    Oki N; Yano K; Okumoto Y; Tsukiyama T; Teraishi M; Tanisaka T
    Genes Genet Syst; 2008 Aug; 83(4):321-9. PubMed ID: 18931457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids.
    Chumová Z; Záveská E; Hloušková P; Ponert J; Schmidt PA; Čertner M; Mandáková T; Trávníček P
    Plant J; 2021 Jul; 107(2):511-524. PubMed ID: 33960537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The repetitive DNA landscape in Avena (Poaceae): chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads.
    Liu Q; Li X; Zhou X; Li M; Zhang F; Schwarzacher T; Heslop-Harrison JS
    BMC Plant Biol; 2019 May; 19(1):226. PubMed ID: 31146681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analyses of tandem repeats and transposable elements in patchouli.
    Liu L; Li J; Wen J; He Y
    Genes Genet Syst; 2021 Jul; 96(2):81-87. PubMed ID: 33883323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.