These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34978000)

  • 1. Relative free-energy calculations for scaffold hopping-type transformations with an automated RE-EDS sampling procedure.
    Ries B; Normak K; Weiß RG; Rieder S; Barros EP; Champion C; König G; Riniker S
    J Comput Aided Mol Des; 2022 Feb; 36(2):117-130. PubMed ID: 34978000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases.
    Champion C; Gall R; Ries B; Rieder SR; Barros EP; Riniker S
    J Chem Inf Model; 2023 Nov; 63(22):7133-7147. PubMed ID: 37948537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Automated Free Energy Calculation with Accelerated Enveloping Distribution Sampling (A-EDS).
    Perthold JW; Petrov D; Oostenbrink C
    J Chem Inf Model; 2020 Nov; 60(11):5395-5406. PubMed ID: 32492343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replica-Exchange Enveloping Distribution Sampling Using Generalized AMBER Force-Field Topologies: Application to Relative Hydration Free-Energy Calculations for Large Sets of Molecules.
    Rieder SR; Ries B; Schaller K; Champion C; Barros EP; Hünenberger PH; Riniker S
    J Chem Inf Model; 2022 Jun; 62(12):3043-3056. PubMed ID: 35675713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replica exchange enveloping distribution sampling (RE-EDS): A robust method to estimate multiple free-energy differences from a single simulation.
    Sidler D; Schwaninger A; Riniker S
    J Chem Phys; 2016 Oct; 145(15):154114. PubMed ID: 27782485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Round-Trip Time Optimization for Replica-Exchange Enveloping Distribution Sampling (RE-EDS).
    Sidler D; Cristòfol-Clough M; Riniker S
    J Chem Theory Comput; 2017 Jun; 13(6):3020-3030. PubMed ID: 28510459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does Hamiltonian Replica Exchange via Lambda-Hopping Enhance the Sampling in Alchemical Free Energy Calculations?
    Procacci P
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replica-Exchange Enveloping Distribution Sampling: Calculation of Relative Free Energies in GROMOS.
    Rieder SR; Ries B; Champion C; Barros EP; Hünenberger PH; Riniker S
    Chimia (Aarau); 2022 Apr; 76(4):327-330. PubMed ID: 38069773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method.
    Azimi S; Khuttan S; Wu JZ; Pal RK; Gallicchio E
    J Chem Inf Model; 2022 Jan; 62(2):309-323. PubMed ID: 34990555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and Overcoming the Sampling Challenges in Relative Binding Free Energy Calculations of a Model Protein:Protein Complex.
    Zhang I; Rufa DA; Pulido I; Henry MM; Rosen LE; Hauser K; Singh S; Chodera JD
    J Chem Theory Comput; 2023 Aug; 19(15):4863-4882. PubMed ID: 37450482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perturbation Free-Energy Toolkit: An Automated Alchemical Topology Builder.
    Petrov D
    J Chem Inf Model; 2021 Sep; 61(9):4382-4390. PubMed ID: 34415755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SAMPL6 SAMPLing challenge: assessing the reliability and efficiency of binding free energy calculations.
    Rizzi A; Jensen T; Slochower DR; Aldeghi M; Gapsys V; Ntekoumes D; Bosisio S; Papadourakis M; Henriksen NM; de Groot BL; Cournia Z; Dickson A; Michel J; Gilson MK; Shirts MR; Mobley DL; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):601-633. PubMed ID: 31984465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites?
    Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK
    J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of enveloping distribution sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase inhibitors.
    Riniker S; Christ CD; Hansen N; Mark AE; Nair PC; van Gunsteren WF
    J Chem Phys; 2011 Jul; 135(2):024105. PubMed ID: 21766923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistate Method to Efficiently Account for Tautomerism and Protonation in Alchemical Free-Energy Calculations.
    Champion C; Hünenberger PH; Riniker S
    J Chem Theory Comput; 2024 May; 20(10):4350-4362. PubMed ID: 38742760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations.
    Karrenbrock M; Rizzi V; Procacci P; Gervasio FL
    J Phys Chem B; 2024 Feb; 128(7):1595-1605. PubMed ID: 38323915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.
    Harger M; Li D; Wang Z; Dalby K; Lagardère L; Piquemal JP; Ponder J; Ren P
    J Comput Chem; 2017 Sep; 38(23):2047-2055. PubMed ID: 28600826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.