These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 34978039)
1. A modified approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in Irrigated Indus Basin. Umar M; Khan SN; Arshad A; Aslam RA; Khan HMS; Rashid H; Pham QB; Nasir A; Noor R; Khedher KM; Anh DT Environ Sci Pollut Res Int; 2022 Apr; 29(18):27257-27278. PubMed ID: 34978039 [TBL] [Abstract][Full Text] [Related]
2. Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Bera A; Mukhopadhyay BP; Das S Chemosphere; 2022 Nov; 307(Pt 2):135831. PubMed ID: 35944685 [TBL] [Abstract][Full Text] [Related]
3. Mapping and assessment of groundwater pollution risks in the main aquifer of the Mostaganem plateau (Northwest Algeria): utilizing the novel vulnerability index and decision tree model. Bentekhici N; Benkesmia Y; Bouhlala MA; Saad A; Ghabi M Environ Sci Pollut Res Int; 2024 Jul; 31(32):45074-45104. PubMed ID: 38958857 [TBL] [Abstract][Full Text] [Related]
4. Regional Aquifer Vulnerability and Pollution Sensitivity Analysis of Drastic Application to Dahomey Basin of Nigeria. Oke SA Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32290197 [TBL] [Abstract][Full Text] [Related]
5. A GIS-based approach for geospatial modeling of groundwater vulnerability and pollution risk mapping in Bou-Areg and Gareb aquifers, northeastern Morocco. Elmeknassi M; El Mandour A; Elgettafi M; Himi M; Tijani R; El Khantouri FA; Casas A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51612-51631. PubMed ID: 33990916 [TBL] [Abstract][Full Text] [Related]
6. Vulnerability Assessment of Farmland Groundwater Pollution around Traditional Industrial Parks Based on the Improved DRASTIC Model-A Case Study in Shifang City, Sichuan Province, China. Zhang Y; Qin H; An G; Huang T Int J Environ Res Public Health; 2022 Jun; 19(13):. PubMed ID: 35805257 [TBL] [Abstract][Full Text] [Related]
7. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model. Sadat-Noori M; Ebrahimi K Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205 [TBL] [Abstract][Full Text] [Related]
8. Application of drastic model and GIS: for assessing vulnerability in hard rock granitic aquifer. Prasad RK; Singh VS; Krishnamacharyulu SK; Banerjee P Environ Monit Assess; 2011 May; 176(1-4):143-55. PubMed ID: 20582738 [TBL] [Abstract][Full Text] [Related]
9. A modified DRASTIC model for groundwater vulnerability assessment using connecting path and analytic hierarchy process methods. Baki AM; Ghavami SM Environ Sci Pollut Res Int; 2023 Nov; 30(51):111270-111283. PubMed ID: 37812345 [TBL] [Abstract][Full Text] [Related]
10. Appraisal of groundwater pollution risk by combining the fuzzy AHP and DRASTIC method in the Burdur Saline Lake Basin, SW Turkey. Şener E Environ Sci Pollut Res Int; 2023 Feb; 30(8):21945-21969. PubMed ID: 36282378 [TBL] [Abstract][Full Text] [Related]
11. A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Gharakezloo YN; Nikoo MR; Karimi-Jashni A; Mooselu MG Environ Sci Pollut Res Int; 2022 Feb; 29(6):8597-8612. PubMed ID: 34490577 [TBL] [Abstract][Full Text] [Related]
12. Geospatial application on mapping groundwater recharge zones in Makutupora basin, Tanzania. Kisiki CP; Bekele TW; Ayenew T; Mjemah IC Heliyon; 2022 Oct; 8(10):e10760. PubMed ID: 36211994 [TBL] [Abstract][Full Text] [Related]
13. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India. Shekar PR; Mathew A Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701 [TBL] [Abstract][Full Text] [Related]
14. Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Liang J; Li Z; Yang Q; Lei X; Kang A; Li S Ecotoxicol Environ Saf; 2019 Jun; 174():649-657. PubMed ID: 30875558 [TBL] [Abstract][Full Text] [Related]
15. Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Saravanan S; Pitchaikani S; Thambiraja M; Sathiyamurthi S; Sivakumar V; Velusamy S; Shanmugamoorthy M Environ Monit Assess; 2022 Nov; 195(1):57. PubMed ID: 36326917 [TBL] [Abstract][Full Text] [Related]
16. Assessment of groundwater vulnerability in an urban area: a comparative study based on DRASTIC, EBF, and LR models. Mohammaddost A; Mohammadi Z; Rezaei M; Pourghasemi HR; Farahmand A Environ Sci Pollut Res Int; 2022 Oct; 29(48):72908-72928. PubMed ID: 35619000 [TBL] [Abstract][Full Text] [Related]
17. Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Kaliraj S; Chandrasekar N; Peter TS; Selvakumar S; Magesh NS Environ Monit Assess; 2015 Jan; 187(1):4073. PubMed ID: 25407988 [TBL] [Abstract][Full Text] [Related]
18. Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Saha D; Alam F Environ Monit Assess; 2014 Dec; 186(12):8741-63. PubMed ID: 25297711 [TBL] [Abstract][Full Text] [Related]
19. DRASTIC framework improvement using Stepwise Weight Assessment Ratio Analysis (SWARA) and combination of Genetic Algorithm and Entropy. Torkashvand M; Neshat A; Javadi S; Yousefi H Environ Sci Pollut Res Int; 2021 Sep; 28(34):46704-46724. PubMed ID: 33201500 [TBL] [Abstract][Full Text] [Related]
20. An integrated groundwater vulnerability and artificial recharge site suitability assessment using GIS multi-criteria decision making approach in Kayseri region, Turkey. Mouhoumed RM; Ekmekcioğlu Ö; Özger M Environ Sci Pollut Res Int; 2024 Jun; 31(27):39794-39822. PubMed ID: 38833051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]