BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 34978201)

  • 1. PlayMolecule Glimpse: Understanding Protein-Ligand Property Predictions with Interpretable Neural Networks.
    Varela-Rial A; Maryanow I; Majewski M; Doerr S; Schapin N; Jiménez-Luna J; De Fabritiis G
    J Chem Inf Model; 2022 Jan; 62(2):225-231. PubMed ID: 34978201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Hybrid Neural Network Deep Learning Method for Protein-Ligand Binding Affinity Prediction and De Novo Drug Design.
    Limbu S; Dakshanamurthy S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks.
    Kwon Y; Shin WH; Ko J; Lee J
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CENsible: Interpretable Insights into Small-Molecule Binding with Context Explanation Networks.
    Bhatt R; Koes DR; Durrant JD
    J Chem Inf Model; 2024 Jun; 64(12):4651-4660. PubMed ID: 38847393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PlayMolecule BindScope: large scale CNN-based virtual screening on the web.
    Skalic M; Martínez-Rosell G; Jiménez J; De Fabritiis G
    Bioinformatics; 2019 Apr; 35(7):1237-1238. PubMed ID: 30169549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding affinity prediction with fusion of graph neural networks and 3D structure-based complex graph.
    Dong L; Shi S; Qu X; Luo D; Wang B
    Phys Chem Chem Phys; 2023 Sep; 25(35):24110-24120. PubMed ID: 37655493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HAC-Net: A Hybrid Attention-Based Convolutional Neural Network for Highly Accurate Protein-Ligand Binding Affinity Prediction.
    Kyro GW; Brent RI; Batista VS
    J Chem Inf Model; 2023 Apr; 63(7):1947-1960. PubMed ID: 36988912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Cascade Graph Convolutional Network for Predicting Protein-Ligand Binding Affinity.
    Shen H; Zhang Y; Zheng C; Wang B; Chen P
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inherently interpretable position-aware convolutional motif kernel networks for biological sequencing data.
    Ditz JC; Reuter B; Pfeifer N
    Sci Rep; 2023 Oct; 13(1):17216. PubMed ID: 37821530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network.
    Nguyen TT; Nguyen DK; Ou YY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34322702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction.
    Li G; Yuan Y; Zhang R
    Comput Biol Chem; 2023 Dec; 107():107972. PubMed ID: 37883905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks.
    Ishida S; Terayama K; Kojima R; Takasu K; Okuno Y
    J Chem Inf Model; 2019 Dec; 59(12):5026-5033. PubMed ID: 31769668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretable neural networks: principles and applications.
    Liu Z; Xu F
    Front Artif Intell; 2023; 6():974295. PubMed ID: 37899962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.