These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies. Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348 [TBL] [Abstract][Full Text] [Related]
3. Restricted processing of CD16a/Fc γ receptor IIIa Patel KR; Roberts JT; Subedi GP; Barb AW J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305 [TBL] [Abstract][Full Text] [Related]
4. Highly sensitive HPLC analysis and biophysical characterization of N-glycans of IgG-Fc domain in comparison between CHO and 293 cells using FcγRIIIa ligand. Kosuge H; Nagatoishi S; Kiyoshi M; Ishii-Watabe A; Tanaka T; Terao Y; Oe S; Ide T; Tsumoto K Biotechnol Prog; 2020 Nov; 36(6):e3016. PubMed ID: 32390308 [TBL] [Abstract][Full Text] [Related]
6. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. Isoda Y; Yagi H; Satoh T; Shibata-Koyama M; Masuda K; Satoh M; Kato K; Iida S PLoS One; 2015; 10(10):e0140120. PubMed ID: 26444434 [TBL] [Abstract][Full Text] [Related]
7. Structural characterization of GASDALIE Fc bound to the activating Fc receptor FcγRIIIa. Ahmed AA; Keremane SR; Vielmetter J; Bjorkman PJ J Struct Biol; 2016 Apr; 194(1):78-89. PubMed ID: 26850169 [TBL] [Abstract][Full Text] [Related]
8. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. Reusch D; Haberger M; Falck D; Peter B; Maier B; Gassner J; Hook M; Wagner K; Bonnington L; Bulau P; Wuhrer M MAbs; 2015; 7(4):732-42. PubMed ID: 25996192 [TBL] [Abstract][Full Text] [Related]
9. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. Falconer DJ; Subedi GP; Marcella AM; Barb AW ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589 [TBL] [Abstract][Full Text] [Related]
10. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: separation-based methods. Reusch D; Haberger M; Maier B; Maier M; Kloseck R; Zimmermann B; Hook M; Szabo Z; Tep S; Wegstein J; Alt N; Bulau P; Wuhrer M MAbs; 2015; 7(1):167-79. PubMed ID: 25524468 [TBL] [Abstract][Full Text] [Related]
12. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Ferrara C; Grau S; Jäger C; Sondermann P; Brünker P; Waldhauer I; Hennig M; Ruf A; Rufer AC; Stihle M; Umaña P; Benz J Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12669-74. PubMed ID: 21768335 [TBL] [Abstract][Full Text] [Related]
13. Characterization of IgG1 Fc Deamidation at Asparagine 325 and Its Impact on Antibody-dependent Cell-mediated Cytotoxicity and FcγRIIIa Binding. Lu X; Machiesky LA; De Mel N; Du Q; Xu W; Washabaugh M; Jiang XR; Wang J Sci Rep; 2020 Jan; 10(1):383. PubMed ID: 31941950 [TBL] [Abstract][Full Text] [Related]
14. An Engineered Human Fc variant With Exquisite Selectivity for FcγRIIIa Kang TH; Lee CH; Delidakis G; Jung J; Richard-Le Goff O; Lee J; Kim JE; Charab W; Bruhns P; Georgiou G Front Immunol; 2019; 10():562. PubMed ID: 30984171 [TBL] [Abstract][Full Text] [Related]
15. Glycosylation of Fcγ receptors influences their interaction with various IgG1 glycoforms. Cambay F; Forest-Nault C; Dumoulin L; Seguin A; Henry O; Durocher Y; De Crescenzo G Mol Immunol; 2020 May; 121():144-158. PubMed ID: 32222585 [TBL] [Abstract][Full Text] [Related]
16. Fc gamma receptor IIIb binding of individual antibody proteoforms resolved by affinity chromatography-mass spectrometry. Lippold S; Knaupp A; de Ru AH; Tjokrodirijo RTN; van Veelen PA; van Puijenbroek E; de Taeye SW; Reusch D; Vidarsson G; Wuhrer M; Schlothauer T; Falck D MAbs; 2021; 13(1):1982847. PubMed ID: 34674601 [TBL] [Abstract][Full Text] [Related]
17. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions. Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616 [TBL] [Abstract][Full Text] [Related]
18. Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. Hajduk J; Brunner C; Malik S; Bangerter J; Schneider G; Thomann M; Reusch D; Zenobi R MAbs; 2020; 12(1):1736975. PubMed ID: 32167012 [TBL] [Abstract][Full Text] [Related]
19. Fc gamma receptor glycosylation modulates the binding of IgG glycoforms: a requirement for stable antibody interactions. Hayes JM; Frostell A; Cosgrave EF; Struwe WB; Potter O; Davey GP; Karlsson R; Anneren C; Rudd PM J Proteome Res; 2014 Dec; 13(12):5471-85. PubMed ID: 25345863 [TBL] [Abstract][Full Text] [Related]
20. Engineering of the upper hinge region of human IgG1 Fc enhances the binding affinity to FcγIIIa (CD16a) receptor isoform. Ashoor DN; Ben Khalaf N; Bourguiba-Hachemi S; Marzouq MH; Fathallah MD Protein Eng Des Sel; 2018 Jun; 31(6):205-212. PubMed ID: 30299461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]