BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34978664)

  • 21. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recruitment viscoelasticity of the tendon.
    Raz E; Lanir Y
    J Biomech Eng; 2009 Nov; 131(11):111008. PubMed ID: 20353259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stress relaxation and stress-strain characteristics of porcine amniotic membrane.
    Kikuchi M; Feng Z; Kosawada T; Sato D; Nakamura T; Umezu M
    Biomed Mater Eng; 2016; 27(6):603-611. PubMed ID: 28234244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils.
    Yang F; Das D; Karunakaran K; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2023 Jun; 163():63-77. PubMed ID: 35259515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale.
    Su L; Wang M; Yin J; Ti F; Yang J; Ma C; Liu S; Lu TJ
    Acta Biomater; 2023 Jan; 155():423-435. PubMed ID: 36372152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fracture toughness determination of porcine muscle tissue based on AQLV model derived viscous dissipated energy.
    Aryeetey OJ; Frank M; Lorenz A; Pahr DH
    J Mech Behav Biomed Mater; 2022 Nov; 135():105429. PubMed ID: 36113396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-linear viscoelastic behavior of the human periodontal ligament.
    Toms SR; Dakin GJ; Lemons JE; Eberhardt AW
    J Biomech; 2002 Oct; 35(10):1411-5. PubMed ID: 12231287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strain-Level Dependent Nonequilibrium Anisotropic Viscoelasticity: Application to the Abdominal Muscle.
    Latorre M; Montáns FJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28753687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries.
    Craiem D; Rojo FJ; Atienza JM; Armentano RL; Guinea GV
    Phys Med Biol; 2008 Sep; 53(17):4543-54. PubMed ID: 18677037
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy dissipation in quasi-linear viscoelastic tissues, cells, and extracellular matrix.
    Babaei B; Velasquez-Mao AJ; Pryse KM; McConnaughey WB; Elson EL; Genin GM
    J Mech Behav Biomed Mater; 2018 Aug; 84():198-207. PubMed ID: 29793157
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation.
    Castile RM; Skelley NW; Babaei B; Brophy RH; Lake SP
    J Biomech; 2016 Jan; 49(1):87-93. PubMed ID: 26643578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trabeculated embryonic myocardium shows rapid stress relaxation and non-quasi-linear viscoelastic behavior.
    Miller CE; Wong CL
    J Biomech; 2000 May; 33(5):615-22. PubMed ID: 10708783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Viscoelastic relaxation and recovery of tendon.
    Duenwald SE; Vanderby R; Lakes RS
    Ann Biomed Eng; 2009 Jun; 37(6):1131-40. PubMed ID: 19353269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity.
    Doehring TC; Freed AD; Carew EO; Vesely I
    J Biomech Eng; 2005 Aug; 127(4):700-8. PubMed ID: 16121541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties.
    Ledoux WR; Meaney DF; Hillstrom HJ
    J Biomech Eng; 2004 Dec; 126(6):831-7. PubMed ID: 15796342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of cartilage stress-relaxation models in unconfined compression: QLV and stretched exponential in combination with fluid flow.
    June RK; Fyhrie DP
    Comput Methods Biomech Biomed Engin; 2013; 16(5):565-76. PubMed ID: 22149471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of the time-strain superposition - Part II: Prediction of the frequency-dependent behaviour of brain tissue.
    Zupančič B
    J Mech Behav Biomed Mater; 2018 Oct; 86():325-335. PubMed ID: 30007181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of cyclic tensile and stress-relaxation tests on porcine skin.
    Remache D; Caliez M; Gratton M; Dos Santos S
    J Mech Behav Biomed Mater; 2018 Jan; 77():242-249. PubMed ID: 28954243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscoelastic properties of the central region of porcine temporomandibular joint disc in shear stress-relaxation.
    Barrientos E; Pelayo F; Tanaka E; Lamela-Rey MJ; Fernández-Canteli A
    J Biomech; 2019 Aug; 93():126-131. PubMed ID: 31301763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.