These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34978664)

  • 101. The development and validation of a numerical integration method for non-linear viscoelastic modeling.
    Ramo NL; Puttlitz CM; Troyer KL
    PLoS One; 2018; 13(1):e0190137. PubMed ID: 29293558
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Role of cytoskeletal components in stress-relaxation behavior of adherent vascular smooth muscle cells.
    Hemmer JD; Nagatomi J; Wood ST; Vertegel AA; Dean D; Laberge M
    J Biomech Eng; 2009 Apr; 131(4):041001. PubMed ID: 19275430
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Viscoelastic shear properties of porcine temporomandibular joint disc.
    Wu Y; Kuo J; Wright GJ; Cisewski SE; Wei F; Kern MJ; Yao H
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):156-63. PubMed ID: 25865544
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Mathematical modeling of ligaments and tendons.
    Woo SL; Johnson GA; Smith BA
    J Biomech Eng; 1993 Nov; 115(4B):468-73. PubMed ID: 8302027
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation.
    Anssari-Benam A; Bader DL; Screen HR
    J Mater Sci Mater Med; 2011 Feb; 22(2):253-62. PubMed ID: 21221737
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma.
    Farshad M; Barbezat M; Flüeler P; Schmidlin F; Graber P; Niederer P
    J Biomech; 1999 Apr; 32(4):417-25. PubMed ID: 10213032
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress.
    Sato M; Ohshima N; Nerem RM
    J Biomech; 1996 Apr; 29(4):461-7. PubMed ID: 8964775
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Viscoelastic Properties of Human Tracheal Tissues.
    Safshekan F; Tafazzoli-Shadpour M; Abdouss M; Shadmehr MB
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27618230
    [TBL] [Abstract][Full Text] [Related]  

  • 109. The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory.
    Quaia C; Ying HS; Optican LM
    PLoS One; 2009 Aug; 4(8):e6480. PubMed ID: 19649257
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Mechanical characterization of porcine ureter for the evaluation of tissue-engineering applications.
    Casarin M; Toniolo I; Todesco M; Carniel EL; Astolfi L; Morlacco A; Moro FD
    Front Bioeng Biotechnol; 2024; 12():1412136. PubMed ID: 38952671
    [No Abstract]   [Full Text] [Related]  

  • 111. Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compression.
    Li W; Shepherd DET; Espino DM
    Biomech Model Mechanobiol; 2024 Mar; ():. PubMed ID: 38483696
    [TBL] [Abstract][Full Text] [Related]  

  • 112. A modified formulation of quasi-linear viscoelasticity for transversely isotropic materials under finite deformation.
    Balbi V; Shearer T; Parnell WJ
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180231. PubMed ID: 30333704
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Establishment of a Biaxial Testing System for Characterization of Right Ventricle Viscoelasticity Under Physiological Loadings.
    Roth K; Liu W; LeBar K; Ahern M; Wang Z
    Cardiovasc Eng Technol; 2024 Mar; ():. PubMed ID: 38468114
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Comparing Predictive Accuracy and Computational Costs for Viscoelastic Modeling of Spinal Cord Tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    J Biomech Eng; 2019 May; 141(5):. PubMed ID: 30835287
    [TBL] [Abstract][Full Text] [Related]  

  • 115. On the importance of nonlinearity of brain tissue under large deformations.
    Takhounts EG; Crandall JR; Darvish K
    Stapp Car Crash J; 2003 Oct; 47():79-92. PubMed ID: 17096245
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Two-Level Scheme for Identification of the Relaxation Time Spectrum Using Stress Relaxation Test Data with the Optimal Choice of the Time-Scale Factor.
    Stankiewicz A
    Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176446
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Quasi-linear viscoelastic behavior of fresh porcine ureter.
    Wang J; Chen J; Gao X; Li B
    Int Urol Nephrol; 2022 Feb; 54(2):249-256. PubMed ID: 34978664
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.
    Criscenti G; De Maria C; Sebastiani E; Tei M; Placella G; Speziali A; Vozzi G; Cerulli G
    J Biomech; 2015 Dec; 48(16):4297-302. PubMed ID: 26573904
    [TBL] [Abstract][Full Text] [Related]  

  • 120. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
    Abramowitch SD; Woo SL
    J Biomech Eng; 2004 Feb; 126(1):92-7. PubMed ID: 15171134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.