These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34978747)

  • 1. Effect of long-term maximum strength training on explosive strength, neural, and contractile properties.
    Balshaw TG; Massey GJ; Maden-Wilkinson TM; Lanza MB; Folland JP
    Scand J Med Sci Sports; 2022 Apr; 32(4):685-697. PubMed ID: 34978747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained.
    Balshaw TG; Massey GJ; Maden-Wilkinson TM; Lanza MB; Folland JP
    Scand J Med Sci Sports; 2019 Mar; 29(3):348-359. PubMed ID: 30387185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training.
    Balshaw TG; Massey GJ; Maden-Wilkinson TM; Tillin NA; Folland JP
    J Appl Physiol (1985); 2016 Jun; 120(11):1364-73. PubMed ID: 27055984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of patellar tendon and muscle-tendon unit stiffness on quadriceps explosive strength in man.
    Massey GJ; Balshaw TG; Maden-Wilkinson TM; Tillin NA; Folland JP
    Exp Physiol; 2017 Apr; 102(4):448-461. PubMed ID: 28205264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive strength: effect of knee-joint angle on functional, neural, and intrinsic contractile properties.
    Lanza MB; Balshaw TG; Folland JP
    Eur J Appl Physiol; 2019 Aug; 119(8):1735-1746. PubMed ID: 31115654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromuscular determinants of explosive torque: Differences among strength-trained and untrained young and older men.
    Orssatto LBR; Wiest MJ; Moura BM; Collins DF; Diefenthaeler F
    Scand J Med Sci Sports; 2020 Nov; 30(11):2092-2100. PubMed ID: 32749004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longer electromechanical delay impairs hamstrings explosive force versus quadriceps.
    Hannah R; Minshull C; Smith SL; Folland JP
    Med Sci Sports Exerc; 2014; 46(5):963-72. PubMed ID: 24126965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction speed and type influences rapid utilisation of available muscle force: neural and contractile mechanisms.
    Tillin NA; Pain MTG; Folland JP
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30348648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human capacity for explosive force production: neural and contractile determinants.
    Folland JP; Buckthorpe MW; Hannah R
    Scand J Med Sci Sports; 2014 Dec; 24(6):894-906. PubMed ID: 25754620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle architecture and morphology as determinants of explosive strength.
    Maden-Wilkinson TM; Balshaw TG; Massey GJ; Folland JP
    Eur J Appl Physiol; 2021 Apr; 121(4):1099-1110. PubMed ID: 33458800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of long-term muscle disuse on neuromuscular function in unilateral transtibial amputees.
    Sibley AR; Strike S; Moudy SC; Tillin NA
    Exp Physiol; 2020 Mar; 105(3):408-418. PubMed ID: 31773821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus.
    Tillin NA; Folland JP
    Eur J Appl Physiol; 2014 Feb; 114(2):365-74. PubMed ID: 24292019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term training for explosive strength causes neural and mechanical adaptations.
    Tillin NA; Pain MT; Folland JP
    Exp Physiol; 2012 May; 97(5):630-41. PubMed ID: 22308164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle-tendon unit stiffness does not independently affect voluntary explosive force production or muscle intrinsic contractile properties.
    Hannah R; Folland JP
    Appl Physiol Nutr Metab; 2015 Jan; 40(1):87-95. PubMed ID: 25494973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts.
    Tillin NA; Pain MT; Folland JP
    Proc Biol Sci; 2012 Jun; 279(1736):2106-15. PubMed ID: 22258636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural adaptations to long-term resistance training: evidence for the confounding effect of muscle size on the interpretation of surface electromyography.
    Škarabot J; Balshaw TG; Maeo S; Massey GJ; Lanza MB; Maden-Wilkinson TM; Folland JP
    J Appl Physiol (1985); 2021 Aug; 131(2):702-715. PubMed ID: 34166110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central fatigue contributes to the greater reductions in explosive than maximal strength with high-intensity fatigue.
    Buckthorpe M; Pain MT; Folland JP
    Exp Physiol; 2014 Jul; 99(7):964-73. PubMed ID: 24728678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explosive neuromuscular performance of males versus females.
    Hannah R; Minshull C; Buckthorpe MW; Folland JP
    Exp Physiol; 2012 May; 97(5):618-29. PubMed ID: 22308163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of contractile force on the architecture and morphology of the quadriceps femoris.
    Massey G; Evangelidis P; Folland J
    Exp Physiol; 2015 Nov; 100(11):1342-51. PubMed ID: 26374174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive hyperthermia elicits distinct responses in maximum and rapid torque production.
    Gordon RJFH; Tyler CJ; Castelli F; Diss CE; Tillin NA
    J Sci Med Sport; 2021 Aug; 24(8):811-817. PubMed ID: 33775526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.