These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34978788)

  • 1. Conditional Generative Adversarial Network for Spectral Recovery to Accelerate Single-Cell Raman Spectroscopic Analysis.
    Ma X; Wang K; Chou KC; Li Q; Lu X
    Anal Chem; 2022 Jan; 94(2):577-582. PubMed ID: 34978788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra.
    Barton S; Alakkari S; O'Dwyer K; Ward T; Hennelly B
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based ultra-fast identification of Raman spectra with low signal-to-noise ratio.
    Liu K; Chen F; Shang L; Wang Y; Peng H; Liu B; Li B
    J Biophotonics; 2024 Jan; 17(1):e202300270. PubMed ID: 37651642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria.
    Liu B; Liu K; Wang N; Ta K; Liang P; Yin H; Li B
    Talanta; 2022 Jul; 244():123383. PubMed ID: 35349842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving skin Raman spectral quality by fluorescence photobleaching.
    Wang H; Zhao J; Lee AM; Lui H; Zeng H
    Photodiagnosis Photodyn Ther; 2012 Dec; 9(4):299-302. PubMed ID: 23200009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.
    Grimbergen MC; van Swol CF; Kendall C; Verdaasdonk RM; Stone N; Bosch JL
    Appl Spectrosc; 2010 Jan; 64(1):8-14. PubMed ID: 20132590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of pathogens by Raman spectroscopy combined with generative adversarial networks.
    Yu S; Li H; Li X; Fu YV; Liu F
    Sci Total Environ; 2020 Jul; 726():138477. PubMed ID: 32315848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted spectral reconstruction method for discrimination of bacterial species with low signal-to-noise ratio Raman measurements.
    Zhu S; Cui X; Xu W; Chen S; Qian W
    RSC Adv; 2019 Mar; 9(17):9500-9508. PubMed ID: 35520730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy-based adversarial network combined with SVM for detection of foodborne pathogenic bacteria.
    Du Y; Han D; Liu S; Sun X; Ning B; Han T; Wang J; Gao Z
    Talanta; 2022 Jan; 237():122901. PubMed ID: 34736716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of spectrum processing method for Raman microscopy on single living cell].
    Kang LL; Huang YX; Wu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):408-11. PubMed ID: 21510392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimisation of wavelength modulated Raman spectroscopy: towards high throughput cell screening.
    Praveen BB; Mazilu M; Marchington RF; Herrington CS; Riches A; Dholakia K
    PLoS One; 2013; 8(6):e67211. PubMed ID: 23825643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence photobleaching of urine for improved signal to noise ratio of the Raman signal - An exploratory study.
    Dutta SB; Krishna H; Khan KM; Gupta S; Majumder SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119144. PubMed ID: 33188968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation.
    Chen S; Lin X; Yuen C; Padmanabhan S; Beuerman RW; Liu Q
    Opt Express; 2014 May; 22(10):12102-14. PubMed ID: 24921330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification.
    Lu W; Chen X; Wang L; Li H; Fu YV
    Anal Chem; 2020 May; 92(9):6288-6296. PubMed ID: 32281780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of pathogenic bacteria by Raman spectroscopy combined with variational auto-encoder and deep learning.
    Liu B; Liu K; Sun J; Shang L; Yang Q; Chen X; Li B
    J Biophotonics; 2023 Apr; 16(4):e202200270. PubMed ID: 36519533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of noise in quantitative biological Raman spectroscopy.
    Smulko JM; Dingari NC; Soares JS; Barman I
    Bioanalysis; 2014 Feb; 6(3):411-21. PubMed ID: 24471960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra.
    Ando M; Hamaguchi HO
    J Biomed Opt; 2014 Jan; 19(1):011016. PubMed ID: 24108582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Speed Diagnosis of Bacterial Pathogens at the Single Cell Level by Raman Microspectroscopy with Machine Learning Filters and Denoising Autoencoders.
    Xu J; Yi X; Jin G; Peng D; Fan G; Xu X; Chen X; Yin H; Cooper JM; Huang WE
    ACS Chem Biol; 2022 Feb; 17(2):376-385. PubMed ID: 35026119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs.
    Moran MBH; Faria MDB; Giraldi GA; Bastos LF; Conci A
    Comput Biol Med; 2021 Feb; 129():104139. PubMed ID: 33271400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification.
    Schie IW; Kiselev R; Krafft C; Popp J
    Analyst; 2016 Nov; 141(23):6387-6395. PubMed ID: 27704071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.