These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 34978796)
21. Label-free absolute protein quantification with data-independent acquisition. He B; Shi J; Wang X; Jiang H; Zhu HJ J Proteomics; 2019 May; 200():51-59. PubMed ID: 30880166 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis. Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348 [TBL] [Abstract][Full Text] [Related]
23. Combining Targeted and Untargeted Data Acquisition to Enhance Quantitative Plant Proteomics Experiments. Hart-Smith G Methods Mol Biol; 2020; 2139():169-178. PubMed ID: 32462586 [TBL] [Abstract][Full Text] [Related]
24. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071 [TBL] [Abstract][Full Text] [Related]
25. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229 [TBL] [Abstract][Full Text] [Related]
26. Investigation of Effects of the Spectral Library on Analysis of diaPASEF Data. Wen C; Gan G; Xu X; Lin G; Chen X; Wu Y; Xu Z; Wang J; Xie C; Wang HR; Zhong CQ J Proteome Res; 2022 Feb; 21(2):507-518. PubMed ID: 34969243 [TBL] [Abstract][Full Text] [Related]
27. Differential protein expression in human knee articular cartilage and medial meniscus using two different proteomic methods: a pilot analysis. Folkesson E; Turkiewicz A; Englund M; Önnerfjord P BMC Musculoskelet Disord; 2018 Nov; 19(1):416. PubMed ID: 30497455 [TBL] [Abstract][Full Text] [Related]
28. Comparison of fractionation proteomics for local SWATH library building. Govaert E; Van Steendam K; Willems S; Vossaert L; Dhaenens M; Deforce D Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28664598 [TBL] [Abstract][Full Text] [Related]
29. A High-Sensitivity Low-Nanoflow LC-MS Configuration for High-Throughput Sample-Limited Proteomics. Zheng R; Matzinger M; Mayer RL; Valenta A; Sun X; Mechtler K Anal Chem; 2023 Dec; 95(51):18673-18678. PubMed ID: 38088903 [TBL] [Abstract][Full Text] [Related]
31. Definitive Screening Designs to Optimize Library-Free DIA-MS Identification and Quantification of Neuropeptides. Phetsanthad A; Carr AV; Fields L; Li L J Proteome Res; 2023 May; 22(5):1510-1519. PubMed ID: 36921255 [TBL] [Abstract][Full Text] [Related]
32. Improved drug target deconvolution with PISA-DIA using an extended, overlapping temperature gradient. Emery-Corbin SJ; Yousef JM; Adhikari S; Sumardy F; Nhu D; van Delft MF; Lessene G; Dziekan J; Webb AI; Dagley LF Proteomics; 2024 Aug; 24(16):e2300644. PubMed ID: 38766901 [TBL] [Abstract][Full Text] [Related]
33. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry. Nys G; Nix C; Cobraiville G; Servais AC; Fillet M Talanta; 2020 Jun; 213():120812. PubMed ID: 32200919 [TBL] [Abstract][Full Text] [Related]
34. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics. Frankenfield AM; Ni J; Ahmed M; Hao L J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413 [TBL] [Abstract][Full Text] [Related]
35. Advanced Precursor Ion Selection Algorithms for Increased Depth of Bottom-Up Proteomic Profiling. Kreimer S; Belov ME; Danielson WF; Levitsky LI; Gorshkov MV; Karger BL; Ivanov AR J Proteome Res; 2016 Oct; 15(10):3563-3573. PubMed ID: 27569903 [TBL] [Abstract][Full Text] [Related]
36. Data Processing and Analysis for DIA-Based Phosphoproteomics Using Spectronaut. Martinez-Val A; Bekker-Jensen DB; Hogrebe A; Olsen JV Methods Mol Biol; 2021; 2361():95-107. PubMed ID: 34236657 [TBL] [Abstract][Full Text] [Related]
37. Data-Independent Acquisition and Label-Free Quantification for Quantitative Proteomics Analysis of Human Cerebrospinal Fluid. Makepeace KAT; Rookyard AW; Das L; Vardarajan BN; Chakrabarty JK; Jain A; Kang MS; Werth EG; Reyes-Dumeyer D; Zerlin-Esteves M; Honig LS; Mayeux R; Brown LM Curr Protoc; 2024 Mar; 4(3):e1014. PubMed ID: 38506436 [TBL] [Abstract][Full Text] [Related]
38. A rapid and sensitive single-cell proteomic method based on fast liquid-chromatography separation, retention time prediction and MS1-only acquisition. Fang W; Du Z; Kong L; Fu B; Wang G; Zhang Y; Qin W Anal Chim Acta; 2023 Apr; 1251():341038. PubMed ID: 36925302 [TBL] [Abstract][Full Text] [Related]
39. Technical advances in proteomics: new developments in data-independent acquisition. Hu A; Noble WS; Wolf-Yadlin A F1000Res; 2016; 5():. PubMed ID: 27092249 [TBL] [Abstract][Full Text] [Related]
40. Improved Quantitative Plant Proteomics via the Combination of Targeted and Untargeted Data Acquisition. Hart-Smith G; Reis RS; Waterhouse PM; Wilkins MR Front Plant Sci; 2017; 8():1669. PubMed ID: 29021799 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]