These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34978813)
1. Multi-Excitation Raman Spectroscopy for Label-Free, Strain-Level Characterization of Bacterial Pathogens in Artificial Sputum Media. Lister AP; Highmore CJ; Hanrahan N; Read J; Munro APS; Tan S; Allan RN; Faust SN; Webb JS; Mahajan S Anal Chem; 2022 Jan; 94(2):669-677. PubMed ID: 34978813 [TBL] [Abstract][Full Text] [Related]
2. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Ho CS; Jean N; Hogan CA; Blackmon L; Jeffrey SS; Holodniy M; Banaei N; Saleh AAE; Ermon S; Dionne J Nat Commun; 2019 Oct; 10(1):4927. PubMed ID: 31666527 [TBL] [Abstract][Full Text] [Related]
3. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis. Kloß S; Lorenz B; Dees S; Labugger I; Rösch P; Popp J Anal Bioanal Chem; 2015 Nov; 407(27):8333-41. PubMed ID: 26041453 [TBL] [Abstract][Full Text] [Related]
4. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles. Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528 [TBL] [Abstract][Full Text] [Related]
5. Antimicrobial susceptibility of microorganisms isolated from sputum culture of patients with cystic fibrosis: Methicillin-resistant Staphylococcus aureus as a serious concern. Mazloomi Nobandegani N; Mahmoudi S; Pourakbari B; Hosseinpour Sadeghi R; Najafi Sani M; Farahmand F; Motamed F; Nabavizadeh Rafsanjani R; Mamishi S Microb Pathog; 2016 Nov; 100():201-204. PubMed ID: 27666507 [TBL] [Abstract][Full Text] [Related]
7. Identification of methicillin-resistant Uysal Ciloglu F; Saridag AM; Kilic IH; Tokmakci M; Kahraman M; Aydin O Analyst; 2020 Nov; 145(23):7559-7570. PubMed ID: 33135033 [TBL] [Abstract][Full Text] [Related]
8. [Analysis of distribution and drug resistance of pathogens isolated from 541 hospitalized children with burn infection]. Dai JX; Li L; Xu L; Chen ZH; Li XY; Liu M; Wen YQ; Chen XD Zhonghua Shao Shang Za Zhi; 2016 Nov; 32(11):670-675. PubMed ID: 27894388 [No Abstract] [Full Text] [Related]
9. [Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection]. Gong YL; Yang ZC; Yin SP; Liu MX; Zhang C; Luo XQ; Peng YZ Zhonghua Shao Shang Za Zhi; 2016 Sep; 32(9):529-35. PubMed ID: 27647068 [TBL] [Abstract][Full Text] [Related]
10. Comparison of conventional and molecular methods for the detection of bacterial pathogens in sputum samples from cystic fibrosis patients. van Belkum A; Renders NH; Smith S; Overbeek SE; Verbrugh HA FEMS Immunol Med Microbiol; 2000 Jan; 27(1):51-7. PubMed ID: 10617790 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning-Assisted Surface-Enhanced Raman Scattering for Rapid Bacterial Identification. Tseng YM; Chen KL; Chao PH; Han YY; Huang NT ACS Appl Mater Interfaces; 2023 Jun; 15(22):26398-26406. PubMed ID: 37216401 [TBL] [Abstract][Full Text] [Related]
12. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Pompilio A; Crocetta V; Scocchi M; Pomponio S; Di Vincenzo V; Mardirossian M; Gherardi G; Fiscarelli E; Dicuonzo G; Gennaro R; Di Bonaventura G BMC Microbiol; 2012 Jul; 12():145. PubMed ID: 22823964 [TBL] [Abstract][Full Text] [Related]
13. Dynamic insights into increasing antibiotic resistance in Staphylococcus aureus by label-free SERS using a portable Raman spectrometer. Zhang P; Fu Y; Zhao H; Liu X; Wu X; Lin T; Wang H; Song L; Fang Y; Lu W; Liu M; Liu W; Zheng D Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 273():121070. PubMed ID: 35231762 [TBL] [Abstract][Full Text] [Related]
14. Bactericidal and Fungicidal Activity of Gruber M; Moser I; Nagl M; Lackner M Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223376 [TBL] [Abstract][Full Text] [Related]
15. [Analysis of distribution and drug resistance of pathogens isolated from 159 patients with catheter-related bloodstream infection in burn intensive care unit]. Luo XQ; Gong YL; Zhang C; Liu MX; Shi YL; Peng YZ; Li N Zhonghua Shao Shang Za Zhi; 2020 Jan; 36(1):24-31. PubMed ID: 32023714 [No Abstract] [Full Text] [Related]
17. Yadav MK; Chae SW; Go YY; Im GJ; Song JJ Front Cell Infect Microbiol; 2017; 7():125. PubMed ID: 28459043 [No Abstract] [Full Text] [Related]
18. Activity of pulmonary vancomycin exposures versus planktonic and biofilm isolates of methicillin-resistant Staphylococcus aureus from cystic fibrosis sputum. Britt NS; Hazlett DS; Horvat RT; Liesman RM; Steed ME Int J Antimicrob Agents; 2020 Apr; 55(4):105898. PubMed ID: 31931147 [TBL] [Abstract][Full Text] [Related]
19. [Analysis of distribution and drug resistance of pathogens from the wounds of 1 310 thermal burn patients]. Zhang C; Gong YL; Luo XQ; Liu MX; Peng YZ Zhonghua Shao Shang Za Zhi; 2018 Nov; 34(11):802-808. PubMed ID: 30481922 [No Abstract] [Full Text] [Related]
20. A Pseudomonas aeruginosa Antimicrobial Affects the Biogeography but Not Fitness of Staphylococcus aureus during Coculture. Barraza JP; Whiteley M mBio; 2021 Mar; 12(2):. PubMed ID: 33785630 [No Abstract] [Full Text] [Related] [Next] [New Search]