These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34979167)

  • 1. A machine learning-driven approach for prioritizing food contact chemicals of carcinogenic concern based on complementary in silico methods.
    Wang CC; Liang YC; Wang SS; Lin P; Tung CW
    Food Chem Toxicol; 2022 Feb; 160():112802. PubMed ID: 34979167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritizing of potential environmental exposure carcinogens beyond IARC group 1-2B based on weight of evidence (WoE) approach.
    Zhang L; Li M; Zhang D; Yue W; Qian Z
    Regul Toxicol Pharmacol; 2024 Jun; 150():105646. PubMed ID: 38777300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging complementary computational models for prioritizing chemicals of developmental and reproductive toxicity concern: an example of food contact materials.
    Tung CW; Cheng HJ; Wang CC; Wang SS; Lin P
    Arch Toxicol; 2020 Feb; 94(2):485-494. PubMed ID: 31897520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning for predicting chemical migration from food packaging materials to foods.
    Wang SS; Lin P; Wang CC; Lin YC; Tung CW
    Food Chem Toxicol; 2023 Aug; 178():113942. PubMed ID: 37451598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidelines for the evaluation of chemicals for carcinogenicity. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment.
    Rep Health Soc Subj (Lond); 1991; 42():1-80. PubMed ID: 1763238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of intentionally used food contact chemicals and their hazards.
    Groh KJ; Geueke B; Martin O; Maffini M; Muncke J
    Environ Int; 2021 May; 150():106225. PubMed ID: 33272655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Methods of identifying carcinogenic factors in medication, food and cosmetics].
    Griciute L
    Acta Zool Pathol Antverp; 1979 Jun; (72):19-34. PubMed ID: 495385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Estimation of Chemical Carcinogenicity with Binary and Ternary Classification Methods.
    Li X; Du Z; Wang J; Wu Z; Li W; Liu G; Shen X; Tang Y
    Mol Inform; 2015 Apr; 34(4):228-35. PubMed ID: 27490168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.
    Kar S; Roy K
    Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curation of cancer hallmark-based genes and pathways for in silico characterization of chemical carcinogenesis.
    Liang PI; Wang CC; Cheng HJ; Wang SS; Lin YC; Lin P; Tung CW
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32539087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors.
    Toma C; Manganaro A; Raitano G; Marzo M; Gadaleta D; Baderna D; Roncaglioni A; Kramer N; Benfenati E
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of classification and regression based QSAR models to predict rodent carcinogenic potency using oral slope factor.
    Kar S; Deeb O; Roy K
    Ecotoxicol Environ Saf; 2012 Aug; 82():85-95. PubMed ID: 22698880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning.
    Auerbach SS; Shah RR; Mav D; Smith CS; Walker NJ; Vallant MK; Boorman GA; Irwin RD
    Toxicol Appl Pharmacol; 2010 Mar; 243(3):300-14. PubMed ID: 20004213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods.
    Zhang L; Ai H; Chen W; Yin Z; Hu H; Zhu J; Zhao J; Zhao Q; Liu H
    Sci Rep; 2017 May; 7(1):2118. PubMed ID: 28522849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New clues on carcinogenicity-related substructures derived from mining two large datasets of chemical compounds.
    Golbamaki A; Benfenati E; Golbamaki N; Manganaro A; Merdivan E; Roncaglioni A; Gini G
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2016 Apr; 34(2):97-113. PubMed ID: 26986491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses.
    Fjodorova N; Vračko M; Tušar M; Jezierska A; Novič M; Kühne R; Schüürmann G
    Mol Divers; 2010 Aug; 14(3):581-94. PubMed ID: 19685274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.