BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34979213)

  • 1. Computer-aided segmentation on MRI for prostate radiotherapy, part II: Comparing human and computer observer populations and the influence of annotator variability on algorithm variability.
    Sanders JW; Mok H; Hanania AN; Venkatesan AM; Tang C; Bruno TL; Thames HD; Kudchadker RJ; Frank SJ
    Radiother Oncol; 2022 Apr; 169():132-139. PubMed ID: 34979213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided segmentation on MRI for prostate radiotherapy, Part I: Quantifying human interobserver variability of the prostate and organs at risk and its impact on radiation dosimetry.
    Sanders JW; Mok H; Hanania AN; Venkatesan AM; Tang C; Bruno TL; Thames HD; Kudchadker RJ; Frank SJ
    Radiother Oncol; 2022 Apr; 169():124-131. PubMed ID: 34921895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty in magnetic resonance imaging-based prostate postimplant dosimetry: Results of a 10-person human observer study, and comparisons with automatic postimplant dosimetry.
    Sanders JW; Tang C; Kudchadker RJ; Venkatesan AM; Mok H; Hanania AN; Thames HD; Bruno TL; Starks C; Santiago E; Cunningham M; Frank SJ
    Brachytherapy; 2023; 22(6):822-832. PubMed ID: 37716820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT.
    Hammers JE; Pirozzi S; Lindsay D; Kaidar-Person O; Tan X; Chen RC; Das SK; Mavroidis P
    J Appl Clin Med Phys; 2020 Feb; 21(2):14-25. PubMed ID: 32058663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning.
    Fiorino C; Reni M; Bolognesi A; Cattaneo GM; Calandrino R
    Radiother Oncol; 1998 Jun; 47(3):285-92. PubMed ID: 9681892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences.
    Dowling JA; Sun J; Pichler P; Rivest-Hénault D; Ghose S; Richardson H; Wratten C; Martin J; Arm J; Best L; Chandra SS; Fripp J; Menk FW; Greer PB
    Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1144-53. PubMed ID: 26581150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autosegmentation of prostate anatomy for radiation treatment planning using deep decision forests of radiomic features.
    Macomber MW; Phillips M; Tarapov I; Jena R; Nori A; Carter D; Folgoc LL; Criminisi A; Nyflot MJ
    Phys Med Biol; 2018 Nov; 63(23):235002. PubMed ID: 30465543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging for prostate bed radiotherapy planning: An inter- and intra-observer variability study.
    Barkati M; Simard D; Taussky D; Delouya G
    J Med Imaging Radiat Oncol; 2016 Apr; 60(2):255-9. PubMed ID: 26568515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of interobserver variability on transrectal ultrasonography-based postimplant dosimetry.
    Xue J; Waterman F; Handler J; Gressen E
    Brachytherapy; 2006; 5(3):174-82. PubMed ID: 16864069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration.
    Thörnqvist S; Petersen JB; Høyer M; Bentzen LN; Muren LP
    Acta Oncol; 2010 Oct; 49(7):1023-32. PubMed ID: 20831491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI prostate contouring is not impaired by the use of a radiotherapy image acquisition set-up. An intra- and inter-observer paired comparative analysis with diagnostic set-up images.
    Sabater S; Pastor-Juan MR; Andres I; López-Martinez L; Lopez-Honrubia V; Tercero-Azorin MI; Sevillano M; Lozano-Setien E; Jimenez-Jimenez E; Berenguer R; Rovirosa A; Castro-Larefors S; Magdalena Marti-Laosa M; Roche O; Martinez-Terol F; Arenas M
    Cancer Radiother; 2021 Apr; 25(2):107-113. PubMed ID: 33423967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformable image registration and interobserver variation in contour propagation for radiation therapy planning.
    Riegel AC; Antone JG; Zhang H; Jain P; Raince J; Rea A; Bergamo AM; Kapur A; Potters L
    J Appl Clin Med Phys; 2016 May; 17(3):347-357. PubMed ID: 27167289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.
    Geraghty JP; Grogan G; Ebert MA
    Radiat Oncol; 2013 Apr; 8():106. PubMed ID: 23631832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technology assessment of automated atlas based segmentation in prostate bed contouring.
    Hwee J; Louie AV; Gaede S; Bauman G; D'Souza D; Sexton T; Lock M; Ahmad B; Rodrigues G
    Radiat Oncol; 2011 Sep; 6():110. PubMed ID: 21906279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
    Shahedi M; Cool DW; Bauman GS; Bastian-Jordan M; Fenster A; Ward AD
    J Digit Imaging; 2017 Dec; 30(6):782-795. PubMed ID: 28342043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interobserver variability of 3.0-tesla and 1.5-tesla magnetic resonance imaging/computed tomography fusion image-based post-implant dosimetry of prostate brachytherapy.
    Watanabe K; Katayama N; Katsui K; Matsushita T; Takamoto A; Ihara H; Nasu Y; Takemoto M; Kuroda M; Kanazawa S
    J Radiat Res; 2019 Jul; 60(4):483-489. PubMed ID: 31083713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CT- and MRI-based seed localization in postimplant evaluation after prostate brachytherapy.
    De Brabandere M; Al-Qaisieh B; De Wever L; Haustermans K; Kirisits C; Moerland MA; Oyen R; Rijnders A; Van den Heuvel F; Siebert FA
    Brachytherapy; 2013; 12(6):580-8. PubMed ID: 23876358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in target volumes definition by using MRI for prostate bed radiotherapy planning--preliminary results].
    Sefrová J; Paluska ; Odrázka K; Belobradek Z; Hoffmann P; Prosvic P; Brod'ák M; Louda M; Macingová Z; Vosmik M
    Klin Onkol; 2010; 23(4):256-63. PubMed ID: 20806824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.