These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 34979298)
1. Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential. Marcar VL; Battegay E; Schmidt D; Cheetham M Vision Res; 2022 Apr; 193():107994. PubMed ID: 34979298 [TBL] [Abstract][Full Text] [Related]
2. Shades of grey; Assessing the contribution of the magno- and parvocellular systems to neural processing of the retinal input in the human visual system from the influence of neural population size and its discharge activity on the VEP. Marcar VL; Baselgia S; Lüthi-Eisenegger B; Jäncke L Brain Behav; 2018 Mar; 8(3):e00860. PubMed ID: 29541531 [TBL] [Abstract][Full Text] [Related]
3. Stimuli to differentiate the neural response at successive stages of visual processing using the VEP from human visual cortex. Marcar VL; Jäncke L J Neurosci Methods; 2018 Jan; 293():199-209. PubMed ID: 28962905 [TBL] [Abstract][Full Text] [Related]
4. To see or not to see; the ability of the magno- and parvocellular response to manifest itself in the VEP determines its appearance to a pattern reversing and pattern onset stimulus. Marcar VL; Jäncke L Brain Behav; 2016 Nov; 6(11):e00552. PubMed ID: 27843702 [TBL] [Abstract][Full Text] [Related]
5. An investigation into the relationship between stimulus property, neural response and its manifestation in the visual evoked potential involving retinal resolution. Marcar VL; Wolf M Eur J Neurosci; 2021 Apr; 53(8):2612-2628. PubMed ID: 33448503 [TBL] [Abstract][Full Text] [Related]
6. Modulation of the neuronal response in human primary visual cortex by re-entrant projections during retinal input processing as manifest in the visual evoked potential. Marcar VL; Wolf M Heliyon; 2024 May; 10(10):e30752. PubMed ID: 38770287 [TBL] [Abstract][Full Text] [Related]
7. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings. Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414 [TBL] [Abstract][Full Text] [Related]
8. The effect of spectral filters on VEP and alpha-wave responses. Willeford KT; Fimreite V; Ciuffreda KJ J Optom; 2016; 9(2):110-7. PubMed ID: 26293969 [TBL] [Abstract][Full Text] [Related]
9. Low- and high-frequency evoked responses following pattern reversal stimuli: a MEG study supported by fMRI constraint. Perfetti B; Franciotti R; Della Penna S; Ferretti A; Caulo M; Romani GL; Onofrj M Neuroimage; 2007 Apr; 35(3):1152-67. PubMed ID: 17337346 [TBL] [Abstract][Full Text] [Related]
10. [Motion-onset visually evoked potential with nasal and temporal half- and full-field stimulation]. Göpfert E; Krug S; Orban D Biomed Biochim Acta; 1991; 50(9):1135-40. PubMed ID: 1796904 [TBL] [Abstract][Full Text] [Related]
11. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans]. Nakayama M Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753 [TBL] [Abstract][Full Text] [Related]
12. Electroretinograms evoked in man by local uniform or patterned stimulation. Arden GB; Vaegan J Physiol; 1983 Aug; 341():85-104. PubMed ID: 6620193 [TBL] [Abstract][Full Text] [Related]
13. Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis. Vanni S; Warnking J; Dojat M; Delon-Martin C; Bullier J; Segebarth C Neuroimage; 2004 Mar; 21(3):801-17. PubMed ID: 15006647 [TBL] [Abstract][Full Text] [Related]
14. Visual acuity in the young infant is highest in a small retinal area. Spinelli D; Pirchio M; Sandini G Vision Res; 1983; 23(10):1133-6. PubMed ID: 6649432 [TBL] [Abstract][Full Text] [Related]
15. Lateral inhibition in visual cortex of migraine patients between attacks. Coppola G; Parisi V; Di Lorenzo C; Serrao M; Magis D; Schoenen J; Pierelli F J Headache Pain; 2013 Feb; 14(1):20. PubMed ID: 23565983 [TBL] [Abstract][Full Text] [Related]
16. Cortical mapping of gamma oscillations in areas V1 and V4 of the macaque monkey. Rols G; Tallon-Baudry C; Girard P; Bertrand O; Bullier J Vis Neurosci; 2001; 18(4):527-40. PubMed ID: 11829299 [TBL] [Abstract][Full Text] [Related]
17. Electrically elicited visual evoked potentials in Argus II retinal implant wearers. Stronks HC; Barry MP; Dagnelie G Invest Ophthalmol Vis Sci; 2013 Jun; 54(6):3891-901. PubMed ID: 23611993 [TBL] [Abstract][Full Text] [Related]
18. Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Schechter I; Butler PD; Zemon VM; Revheim N; Saperstein AM; Jalbrzikowski M; Pasternak R; Silipo G; Javitt DC Clin Neurophysiol; 2005 Sep; 116(9):2204-15. PubMed ID: 16055375 [TBL] [Abstract][Full Text] [Related]
19. Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans. Gebodh N; Vanegas MI; Kelly SP Brain Topogr; 2017 Jul; 30(4):450-460. PubMed ID: 28474167 [TBL] [Abstract][Full Text] [Related]
20. The sequential processing of visual motion in the human electroretinogram and visual evoked potential. Korth M; Rix R; Sembritzki O Vis Neurosci; 2000; 17(4):631-46. PubMed ID: 11016581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]