These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

960 related articles for article (PubMed ID: 3497955)

  • 1. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse formation in the olfactory cortex by regenerating optic axons: ultrastructural evidence for polyspecific chemoaffinity.
    Scalia F
    J Comp Neurol; 1987 Sep; 263(4):497-513. PubMed ID: 2822778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth cone-target interactions in the frog retinotectal pathway.
    Reh TA; Constantine-Paton M
    J Neurosci Res; 1985; 13(1-2):89-100. PubMed ID: 2983078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic interrelationships between the optic tectum and the ipsilateral nucleus isthmi in Rana pipiens.
    Gruberg ER; Hughes TE; Karten HJ
    J Comp Neurol; 1994 Jan; 339(3):353-64. PubMed ID: 8132867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The superficial plexiform layer: a third retinal association area.
    Wieniawa-Narkiewicz E; Hughes A
    J Comp Neurol; 1992 Oct; 324(4):463-84. PubMed ID: 1430334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M; Pallas SL; Lim S; Finlay BL
    J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the stability of positional markers in the goldfish tectum.
    Busse U; Stuermer CA
    J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic circuits involving an individual retinogeniculate axon in the cat.
    Hamos JE; Van Horn SC; Raczkowski D; Sherman SM
    J Comp Neurol; 1987 May; 259(2):165-92. PubMed ID: 3584556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal projections in the goldfish: a study using cobaltous-lysine.
    Springer AD; Gaffney JS
    J Comp Neurol; 1981 Dec; 203(3):401-24. PubMed ID: 6274920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale synaptic errors during map formation by regeneration optic axons in the goldfish.
    Meyer RL; Kageyama GH
    J Comp Neurol; 1999 Jun; 409(2):299-312. PubMed ID: 10379922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective retinal reinnervation of a surgically created tectal island in goldfish. II. Electron microscopic analysis.
    Edwards MA; Murray M
    J Comp Neurol; 1985 Feb; 232(3):386-400. PubMed ID: 3973098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.