These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34979802)

  • 1. Synergistic Metabolism of Glucose and Formate Increases the Yield of Short-Chain Organic Acids in
    Hu G; Guo L; Gao C; Song W; Liu L; Chen X
    ACS Synth Biol; 2022 Jan; 11(1):135-143. PubMed ID: 34979802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli W3110 to produce L-malate.
    Dong X; Chen X; Qian Y; Wang Y; Wang L; Qiao W; Liu L
    Biotechnol Bioeng; 2017 Mar; 114(3):656-664. PubMed ID: 27668703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient production of myo-inositol in Escherichia coli through metabolic engineering.
    You R; Wang L; Shi C; Chen H; Zhang S; Hu M; Tao Y
    Microb Cell Fact; 2020 May; 19(1):109. PubMed ID: 32448266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli.
    Cheong S; Clomburg JM; Gonzalez R
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):579-588. PubMed ID: 29330665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical-biological hybrid system for CO
    Tashiro Y; Hirano S; Matson MM; Atsumi S; Kondo A
    Metab Eng; 2018 May; 47():211-218. PubMed ID: 29580924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli.
    Martinez I; Gao H; Bennett GN; San KY
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):53-60. PubMed ID: 29196893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate.
    Kirst H; Ferlez BH; Lindner SN; Cotton CAR; Bar-Even A; Kerfeld CA
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35193962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production.
    Liu J; Li J; Liu Y; Shin HD; Ledesma-Amaro R; Du G; Chen J; Liu L
    ACS Synth Biol; 2018 Sep; 7(9):2139-2147. PubMed ID: 30092627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct conversion of glucose to malate by synthetic metabolic engineering.
    Ye X; Honda K; Morimoto Y; Okano K; Ohtake H
    J Biotechnol; 2013 Mar; 164(1):34-40. PubMed ID: 23246984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a solar formic acid/pentose (SFAP) pathway in Escherichia coli for lactic acid production.
    Zhang Y; Sun T; Liu L; Cao X; Zhang W; Wang W; Li C
    Metab Eng; 2024 May; 83():150-159. PubMed ID: 38621518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple strategies for metabolic engineering of Escherichia coli for efficient production of glycolate.
    Zhu T; Yao D; Li D; Xu H; Jia S; Bi C; Cai J; Zhu X; Zhang X
    Biotechnol Bioeng; 2021 Dec; 118(12):4699-4707. PubMed ID: 34491579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.