BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34980351)

  • 1. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix.
    Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA
    Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies.
    Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A
    Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of pullulan-based nanocomposites reinforced with montmorillonite and tempo cellulose nanofibril.
    Yeasmin S; Yeum JH; Yang SB
    Carbohydr Polym; 2020 Jul; 240():116307. PubMed ID: 32475577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites.
    Wu CN; Saito T; Fujisawa S; Fukuzumi H; Isogai A
    Biomacromolecules; 2012 Jun; 13(6):1927-32. PubMed ID: 22568705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers.
    Fazeli M; Keley M; Biazar E
    Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources.
    Puangsin B; Yang Q; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites.
    Jia Y; Hu C; Shi P; Xu Q; Zhu W; Liu R
    Int J Biol Macromol; 2020 Oct; 161():223-230. PubMed ID: 32512103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays.
    Sethi J; Wågberg L; Larsson PA
    Carbohydr Polym; 2022 Nov; 295():119867. PubMed ID: 35989010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets.
    Xu D; Wang S; Berglund LA; Zhou Q
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4463-4472. PubMed ID: 33428385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils.
    Zhao J; He X; Wang Y; Zhang W; Zhang X; Zhang X; Deng Y; Lu C
    Carbohydr Polym; 2014 Apr; 104():143-50. PubMed ID: 24607171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.
    Hanid NA; Wahit MU; Guo Q; Mahmoodian S; Soheilmoghaddam M
    Carbohydr Polym; 2014 Jan; 99():91-7. PubMed ID: 24274483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose-clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution.
    Yang Q; Wu CN; Saito T; Isogai A
    Carbohydr Polym; 2014 Jan; 100():179-84. PubMed ID: 24188852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups.
    Shimizu M; Fukuzumi H; Saito T; Isogai A
    Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments.
    Tibolla H; Czaikoski A; Pelissari FM; Menegalli FC; Cunha RL
    Int J Biol Macromol; 2020 Oct; 161():132-146. PubMed ID: 32522543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of cellulose nanofibril/titanium dioxide nanoparticle nanocomposites as fillers for PVA-based packaging and investigation into their intestinal toxicity.
    Yu Z; Wang W; Sun L; Kong F; Lin M; Mustapha A
    Int J Biol Macromol; 2020 Aug; 156():1174-1182. PubMed ID: 31759007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.