These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34980354)
1. Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Skwierczyńska M; Woźny P; Runowski M; Kulpiński P; Lis S Carbohydr Polym; 2022 Mar; 279():119010. PubMed ID: 34980354 [TBL] [Abstract][Full Text] [Related]
2. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
3. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586 [TBL] [Abstract][Full Text] [Related]
4. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. Golubewa L; Karpicz R; Matulaitiene I; Selskis A; Rutkauskas D; Pushkarchuk A; Khlopina T; Michels D; Lyakhov D; Kulahava T; Shah A; Svirko Y; Kuzhir P ACS Appl Mater Interfaces; 2020 Nov; 12(45):50971-50984. PubMed ID: 33107725 [TBL] [Abstract][Full Text] [Related]
5. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy. Nguyen TH; Zhang Z; Mustapha A; Li H; Lin M J Agric Food Chem; 2014 Oct; 62(43):10445-51. PubMed ID: 25317673 [TBL] [Abstract][Full Text] [Related]
6. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods. Zong S; Wang Z; Yang J; Wang C; Xu S; Cui Y Talanta; 2012 Aug; 97():368-75. PubMed ID: 22841094 [TBL] [Abstract][Full Text] [Related]
7. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Boca SC; Astilean S Nanotechnology; 2010 Jun; 21(23):235601. PubMed ID: 20463383 [TBL] [Abstract][Full Text] [Related]
8. A high-resolution study of in situ surface-enhanced Raman scattering nanotag behavior in biological systems. Wang J; Anderson W; Li J; Lin LL; Wang Y; Trau M J Colloid Interface Sci; 2019 Mar; 537():536-546. PubMed ID: 30469121 [TBL] [Abstract][Full Text] [Related]
9. Biomacromolecular-Assembled Nanoclusters: Key Aspects for Robust Colloidal SERS Sensing. Höller RPM; Jahn IJ; Cialla-May D; Chanana M; Popp J; Fery A; Kuttner C ACS Appl Mater Interfaces; 2020 Dec; 12(51):57302-57313. PubMed ID: 33306362 [TBL] [Abstract][Full Text] [Related]
10. High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Hu B; Sun DW; Pu H; Huang Z Food Chem; 2023 Jun; 412():135332. PubMed ID: 36774690 [TBL] [Abstract][Full Text] [Related]
11. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212 [TBL] [Abstract][Full Text] [Related]
12. A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Jiang L; Liang X; You T; Yin P; Wang H; Guo L; Yang S Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():50-4. PubMed ID: 25699693 [TBL] [Abstract][Full Text] [Related]
13. Bull serum albumin coated Au@Agnanorods as SERS probes for ultrasensitive osteosarcoma cell detection. Yue J; Liu Z; Cai X; Ding X; Chen S; Tao K; Zhao T Talanta; 2016 Apr; 150():503-9. PubMed ID: 26838436 [TBL] [Abstract][Full Text] [Related]
14. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating. Fazio B; D'Andrea C; Foti A; Messina E; Irrera A; Donato MG; Villari V; Micali N; Maragò OM; Gucciardi PG Sci Rep; 2016 Jun; 6():26952. PubMed ID: 27246267 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. Litti L; Trivini S; Ferraro D; Reguera J ACS Appl Mater Interfaces; 2021 Jul; 13(29):34752-34761. PubMed ID: 34256559 [TBL] [Abstract][Full Text] [Related]
16. PLLA nanofibrous paper-based plasmonic substrate with tailored hydrophilicity for focusing SERS detection. Shao J; Tong L; Tang S; Guo Z; Zhang H; Li P; Wang H; Du C; Yu XF ACS Appl Mater Interfaces; 2015 Mar; 7(9):5391-9. PubMed ID: 25697378 [TBL] [Abstract][Full Text] [Related]
17. Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells. Jiang L; Qian J; Cai F; He S Anal Bioanal Chem; 2011 Jul; 400(9):2793-800. PubMed ID: 21455653 [TBL] [Abstract][Full Text] [Related]
18. Atomic Force Microscope Guided SERS Spectra Observation for Au@Ag-4MBA@PVP Plasmonic Nanoparticles. Yang L; Xu L; Wu X; Fang H; Zhong S; Wang Z; Bu J; Yuan X Molecules; 2019 Oct; 24(20):. PubMed ID: 31640276 [TBL] [Abstract][Full Text] [Related]
19. Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection. Zhang S; Xiong R; Mahmoud MA; Quigley EN; Chang H; El-Sayed M; Tsukruk VV ACS Appl Mater Interfaces; 2018 May; 10(21):18380-18389. PubMed ID: 29737825 [TBL] [Abstract][Full Text] [Related]
20. SERS-ELISA determination of human carboxylesterase 1 using metal-organic framework doped with gold nanoparticles as SERS substrate. Feng J; Lu H; Yang Y; Huang W; Cheng H; Kong H; Li L Mikrochim Acta; 2021 Jul; 188(8):280. PubMed ID: 34331134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]