These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34980737)

  • 21. Using deepest regression method for optimization of fluidized bed granulation on semi-full scale.
    Rambali B; Van Aelst S; Baert L; Massart DL
    Int J Pharm; 2003 Jun; 258(1-2):85-94. PubMed ID: 12753756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Granule characterization during fluid bed drying by development of a near infrared method to determine water content and median granule size.
    Nieuwmeyer FJ; Damen M; Gerich A; Rusmini F; van der Voort Maarschalk K; Vromans H
    Pharm Res; 2007 Oct; 24(10):1854-61. PubMed ID: 17484041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional moisture content and size measurement of pharmaceutical granules after fluid bed drying using near-infrared chemical imaging.
    Ghijs M; Vanbillemont B; Nicolaï N; De Beer T; Nopens I
    Int J Pharm; 2021 Feb; 595():120069. PubMed ID: 33421586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.
    Ming L; Li Z; Wu F; Du R; Feng Y
    PLoS One; 2017; 12(6):e0180209. PubMed ID: 28662115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative on-line vs. off-line NIR analysis of fluidized bed drying with consideration of the spectral background.
    Heigl N; Koller DM; Glasser BJ; Muzzio FJ; Khinast JG
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1064-74. PubMed ID: 24056058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New perspectives for visual characterization of pharmaceutical solids.
    Laitinen N; Antikainen O; Rantanen J; Yliruusi J
    J Pharm Sci; 2004 Jan; 93(1):165-76. PubMed ID: 14648646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of Preprocessing and Validation Methodologies for PAT: Case Study of the Granulation and Coating Steps for the Manufacturing of Ethenzamide Tablets.
    Shibayama S; Funatsu K
    AAPS PharmSciTech; 2021 Jan; 22(1):41. PubMed ID: 33420526
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.
    Liu H; Li M
    Int J Pharm; 2014 Jul; 468(1-2):223-33. PubMed ID: 24732033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time monitoring of particle size distribution in a continuous granulation and drying process by near infrared spectroscopy.
    Pauli V; Roggo Y; Kleinebudde P; Krumme M
    Eur J Pharm Biopharm; 2019 Aug; 141():90-99. PubMed ID: 31082510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implementation of real-time and in-line feedback control for a fluid bed granulation process.
    Reimers T; Thies J; Stöckel P; Dietrich S; Pein-Hackelbusch M; Quodbach J
    Int J Pharm; 2019 Aug; 567():118452. PubMed ID: 31233845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process analysis of fluidized bed granulation.
    Rantanen J; Jørgensen A; Räsänen E; Luukkonen P; Airaksinen S; Raiman J; Hänninen K; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2001 Oct; 2(4):21. PubMed ID: 14727858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.
    Aleksić I; Đuriš J; Ibrić S; Parojčić J
    Int J Pharm; 2015 Dec; 496(2):627-35. PubMed ID: 26551673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of in-line near infrared spectroscopy and multivariate batch modeling for process monitoring in fluid bed granulation.
    Kona R; Qu H; Mattes R; Jancsik B; Fahmy RM; Hoag SW
    Int J Pharm; 2013 Aug; 452(1-2):63-72. PubMed ID: 23618967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting particle size during fluid bed granulation using process measurement data.
    Närvänen T; Antikainen O; Yliruusi J
    AAPS PharmSciTech; 2009; 10(4):1268-75. PubMed ID: 19876742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A semi-theoretical model for simulating the temporal evolution of moisture-temperature during industrial fluidized bed granulation.
    Amini H; He X; Tseng YC; Kucuk G; Schwabe R; Schultz L; Maus M; Schröder D; Rajniak P; Bilgili E
    Eur J Pharm Biopharm; 2020 Jun; 151():137-152. PubMed ID: 32304867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of granules produced by high-shear and fluidized-bed granulation methods.
    Morin G; Briens L
    AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale.
    Rambali B; Baert L; Massart DL
    Int J Pharm; 2001 Jun; 220(1-2):149-60. PubMed ID: 11376977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focused beam reflectance method as an innovative (PAT) tool to monitor in-line granulation process in fluidized bed.
    Alshihabi F; Vandamme T; Betz G
    Pharm Dev Technol; 2013 Feb; 18(1):73-84. PubMed ID: 22035287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid Nondestructive Detection of Water Content and Granulation in Postharvest "Shatian" Pomelo Using Visible/Near-Infrared Spectroscopy.
    Xu S; Lu H; Ference C; Qiu G; Liang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using the Box-Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation.
    Liu H; Wang K; Schlindwein W; Li M
    Int J Pharm; 2013 May; 448(2):329-38. PubMed ID: 23583710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.