These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34980750)
1. [Elucidation of Phenomena Involving Cyanobacteria in Freshwater Ecosystem by Chemically Ecological Approach]. Harada KI Yakugaku Zasshi; 2022; 142(1):39-64. PubMed ID: 34980750 [TBL] [Abstract][Full Text] [Related]
2. Cyanobacterial blue color formation during lysis under natural conditions. Arii S; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada K Appl Environ Microbiol; 2015 Apr; 81(8):2667-75. PubMed ID: 25662969 [TBL] [Abstract][Full Text] [Related]
3. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Arii S; Yamashita R; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada KI Chemosphere; 2021 Dec; 284():131378. PubMed ID: 34217930 [TBL] [Abstract][Full Text] [Related]
4. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. Moretto JAS; de Freitas PNN; de Almeida ÉC; Altarugio LM; da Silva SV; de Fátima Fiore M; Pinto E BMC Microbiol; 2022 Mar; 22(1):78. PubMed ID: 35321650 [TBL] [Abstract][Full Text] [Related]
5. Characteristic oxidation behavior of β-cyclocitral from the cyanobacterium Microcystis. Tomita K; Hasegawa M; Arii S; Tsuji K; Bober B; Harada K Environ Sci Pollut Res Int; 2016 Jun; 23(12):11998-2006. PubMed ID: 26961531 [TBL] [Abstract][Full Text] [Related]
6. Analytical Technique Optimization on the Detection of β-cyclocitral in Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007 [TBL] [Abstract][Full Text] [Related]
7. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. Chen W; Dou J; Xu X; Ma X; Chen J; Liu X J Hazard Mater; 2024 Mar; 465():133248. PubMed ID: 38147752 [TBL] [Abstract][Full Text] [Related]
8. Production of β-Cyclocitral and Its Precursor β-Carotene in Wang X; Zhu Y; Hou D; Teng F; Cai Z; Tao Y Toxins (Basel); 2022 Mar; 14(3):. PubMed ID: 35324698 [TBL] [Abstract][Full Text] [Related]
9. Interspecific competition between Microcystis aeruginosa and Pseudanadaena and their production of T&O compounds. Zhang K; Pan R; Luo Z; Zhang T; Fan J Chemosphere; 2020 Aug; 252():126509. PubMed ID: 32224357 [TBL] [Abstract][Full Text] [Related]
10. Blue color formation of cyanobacteria with beta-cyclocitral. Harada K; Ozaki K; Tsuzuki S; Kato H; Hasegawa M; Kuroda EK; Arii S; Tsuji K J Chem Ecol; 2009 Nov; 35(11):1295-301. PubMed ID: 19936836 [TBL] [Abstract][Full Text] [Related]
11. Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Hasegawa M; Nishizawa A; Tsuji K; Kimura S; Harada K Microbes Environ; 2012; 27(4):525-8. PubMed ID: 23047148 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus accelerate the sulfur cycle by promoting the release of malodorous volatile organic sulfur compounds from Microcystis in freshwater lakes. Deng X; Ruan L; Ren R; Tao M; Zhang J; Wang L; Yan Y; Wen X; Yang X; Xie P Sci Total Environ; 2022 Nov; 845():157280. PubMed ID: 35835193 [TBL] [Abstract][Full Text] [Related]
13. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Yan X; Xu X; Wang M; Wang G; Wu S; Li Z; Sun H; Shi A; Yang Y Water Res; 2017 Nov; 125():449-457. PubMed ID: 28898702 [TBL] [Abstract][Full Text] [Related]
14. β-cyclocitral induced rapid cell death of Microcystis aeruginosa. Wang X; Cao H; Zhu Y; Zhou T; Teng F; Tao Y Environ Pollut; 2024 May; 348():123824. PubMed ID: 38513945 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral. Chang DW; Hsieh ML; Chen YM; Lin TF; Chang JS J Hazard Mater; 2011 Jan; 185(2-3):1214-20. PubMed ID: 21051144 [TBL] [Abstract][Full Text] [Related]
16. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis. Jüttner F; Watson SB; von Elert E; Köster O J Chem Ecol; 2010 Dec; 36(12):1387-97. PubMed ID: 21072572 [TBL] [Abstract][Full Text] [Related]
17. Lysis of cyanobacteria with volatile organic compounds. Ozaki K; Ohta A; Iwata C; Horikawa A; Tsuji K; Ito E; Ikai Y; Harada K Chemosphere; 2008 Apr; 71(8):1531-8. PubMed ID: 18179811 [TBL] [Abstract][Full Text] [Related]
18. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Zheng T; Zhou M; Yang L; Wang Y; Wang Y; Meng Y; Liu J; Zuo Z Ecotoxicol Environ Saf; 2020 Apr; 192():110313. PubMed ID: 32066007 [TBL] [Abstract][Full Text] [Related]
19. The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Gobler CJ; Burkholder JM; Davis TW; Harke MJ; Johengen T; Stow CA; Van de Waal DB Harmful Algae; 2016 Apr; 54():87-97. PubMed ID: 28073483 [TBL] [Abstract][Full Text] [Related]
20. Spatial distributions of β-cyclocitral and β-ionone in the sediment and overlying water of the west shore of Taihu Lake. Liu X; Shi C; Xu X; Li X; Xu Y; Huang H; Zhao Y; Zhou Y; Shen H; Chen C; Wang G Sci Total Environ; 2017 Feb; 579():430-438. PubMed ID: 27890412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]