These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34981893)

  • 1. Hypoxia-Activated Fluorescent Probe Based on Self-Immolative Block Copolymer.
    Shao K; Zhang W; Shen J; He Y
    Macromol Biosci; 2022 Mar; 22(3):e2100417. PubMed ID: 34981893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ construction of a self-assembled AIE probe for tumor hypoxia imaging.
    Xue T; Shao K; Xiang J; Pan X; Zhu Z; He Y
    Nanoscale; 2020 Apr; 12(14):7509-7513. PubMed ID: 32227022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia-Triggered In Situ Self-Assembly of a Charge Switchable Azo Polymer with AIEgens for Tumor Imaging.
    Shen J; Shao K; Zhang W; He Y
    ACS Macro Lett; 2021 Jun; 10(6):702-707. PubMed ID: 35549096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An activatable azophenyl fluorescent probe for hypoxic fluorescence imaging in living cells.
    Liu Z; Zhang Z; Li J; Zhu G; Li Q
    Luminescence; 2024 Jun; 39(6):e4798. PubMed ID: 38825785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications.
    Eom T; Yoo W; Kim S; Khan A
    Biomaterials; 2018 Dec; 185():333-347. PubMed ID: 30268898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging.
    Ai S; Dong W; Li J; Yang Z
    J Biomed Nanotechnol; 2022 Apr; 18(4):1019-1027. PubMed ID: 35854443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-linked labeling of enzymes by self-immolative polymers.
    Weinstain R; Baran PS; Shabat D
    Bioconjug Chem; 2009 Sep; 20(9):1783-91. PubMed ID: 19689155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimethyl-Substituted Carbamate as a Versatile Self-Immolative Linker for Fluorescence Detection of Enzyme Reactions.
    Nakamura N; Uchinomiya S; Inoue K; Ojida A
    Molecules; 2020 May; 25(9):. PubMed ID: 32380657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Immolative Chemiluminescence Polymers: Innate Assimilation of Chemiexcitation in a Domino-like Depolymerization.
    Gnaim S; Shabat D
    J Am Chem Soc; 2017 Jul; 139(29):10002-10008. PubMed ID: 28671836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Immolative Polymers: An Emerging Class of Degradable Materials with Distinct Disassembly Profiles.
    Shelef O; Gnaim S; Shabat D
    J Am Chem Soc; 2021 Dec; 143(50):21177-21188. PubMed ID: 34898203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-immolative near-infrared fluorescent probe for identification of cancer cells and facilitating its apoptosis.
    Zhang J; Han T; Sun H; Han Z; Shi X; Gao J; Liu X; Zhang H
    Anal Bioanal Chem; 2024 Mar; 416(7):1529-1540. PubMed ID: 38342788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of near-infrared fluorescent probes for superoxide anion radical: Enhancement of self-stability and sensitivity by self-immolative linker.
    Ji K; Shan J; Wang X; Tan X; Hou J; Liu Y; Song Y
    Free Radic Biol Med; 2021 May; 167():36-44. PubMed ID: 33711416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azoreductase-Responsive Nanoprobe for Hypoxia-Induced Mitophagy Imaging.
    Ma D; Huang C; Zheng J; Zhou W; Tang J; Chen W; Li J; Yang R
    Anal Chem; 2019 Jan; 91(2):1360-1367. PubMed ID: 30565448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strategy of designing neutrophil elastase fluorescent probe based on self-immolative group and its application in bioimaging.
    Li X; Guo Y; Qiu Y; Luo X; Liu G; Han Y; Sun Q; Dong Q
    Anal Chim Acta; 2023 Jan; 1237():340617. PubMed ID: 36442943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An activatable anticancer polymer-drug conjugate based on the self-immolative azobenzene motif.
    Eom T; Yoo W; Lee YD; Park JH; Choe Y; Bang J; Kim S; Khan A
    J Mater Chem B; 2017 Jun; 5(24):4574-4578. PubMed ID: 32264300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-based activatable optical probes for tumor fluorescence and photoacoustic imaging.
    Zhen X; Jiang X
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Mar; 12(2):e1593. PubMed ID: 31580007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-Based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Release Events by Fluorescence or Chemiluminescence Output.
    Gnaim S; Shabat D
    Acc Chem Res; 2019 Oct; 52(10):2806-2817. PubMed ID: 31483607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-immolative polymers.
    Sagi A; Weinstain R; Karton N; Shabat D
    J Am Chem Soc; 2008 Apr; 130(16):5434-5. PubMed ID: 18376834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Engineering of Hypoxia and Acidic pH Dual-Stimuli-Responsive Intelligent Fluorescent Nanoprobe for Precise Tumor Imaging.
    Chen S; Chen M; Yang J; Zeng X; Zhou Y; Yang S; Yang R; Yuan Q; Zheng J
    Small; 2021 Jul; 17(28):e2100243. PubMed ID: 34117822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleavable azobenzene linkers for the design of stimuli-responsive materials.
    Khan A
    Chem Commun (Camb); 2024 Jun; 60(52):6591-6602. PubMed ID: 38872512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.