These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 34981934)
1. Perovskite Solar Cells Employing a PbSO Zheng J; Li F; Chen C; Du Q; Jin M; Li H; Ji M; Shen Z ACS Appl Mater Interfaces; 2022 Jan; 14(2):2989-2999. PubMed ID: 34981934 [TBL] [Abstract][Full Text] [Related]
2. Synergistic Ionic Liquid in Hole Transport Layers for Highly Stable and Efficient Perovskite Solar Cells. Cao F; Zhu Z; Zhang C; Chen P; Wang S; Tong A; He R; Wang Y; Sun W; Li Y; Wu J Small; 2023 Jul; 19(27):e2207784. PubMed ID: 36974610 [TBL] [Abstract][Full Text] [Related]
3. Improved Performance and Reproducibility of Perovskite Solar Cells by Well-Soluble Tris(pentafluorophenyl)borane as a p-Type Dopant. Ye T; Wang J; Chen W; Yang Y; He D ACS Appl Mater Interfaces; 2017 May; 9(21):17923-17931. PubMed ID: 28485135 [TBL] [Abstract][Full Text] [Related]
4. Plasma-Exposure-Induced Mobility Enhancement of LiTFSI-Doped Spiro-OMeTAD Hole Transport Layer in Perovskite Solar Cells and Its Impact on Device Performance. Qu H; Zhao G; Wang Y; Liang L; Zhang L; Liu W; Zhang C; Niu C; Fang Y; Shi J; Cheng J; Wang D Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561493 [TBL] [Abstract][Full Text] [Related]
5. Stability Improvement of Perovskite Solar Cells by the Moisture-Resistant PMMA:Spiro-OMeTAD Hole Transport Layer. Ma S; Pang S; Dong H; Xie X; Liu G; Dong P; Liu D; Zhu W; Xi H; Chen D; Zhang C; Hao Y Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054749 [TBL] [Abstract][Full Text] [Related]
6. A Multifunctional Liquid Crystal as Hole Transport Layer Additive Enhances Efficiency and Stability of Perovskite Solar Cells. Lai Q; Zhuang R; Zhang K; Wu T; Xie L; Zhao R; Yang L; Wang Y; Hua Y Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202305670. PubMed ID: 37268600 [TBL] [Abstract][Full Text] [Related]
7. Improving the Morphology Stability of Spiro-OMeTAD Films for Enhanced Thermal Stability of Perovskite Solar Cells. Song W; Rakocevic L; Thiruvallur Eachambadi R; Qiu W; Bastos JP; Gehlhaar R; Kuang Y; Hadipour A; Aernouts T; Poortmans J ACS Appl Mater Interfaces; 2021 Sep; 13(37):44294-44301. PubMed ID: 34498844 [TBL] [Abstract][Full Text] [Related]
8. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells. Zhang Y; Zhou C; Lin L; Pei F; Xiao M; Yang X; Yuan G; Zhu C; Chen Y; Chen Q Nanomicro Lett; 2023 Jul; 15(1):175. PubMed ID: 37428245 [TBL] [Abstract][Full Text] [Related]
9. Oxidization-Free Spiro-OMeTAD Hole-Transporting Layer for Efficient CsPbI Ma Z; Xiao Z; Liu Q; Huang D; Zhou W; Jiang H; Yang Z; Zhang M; Zhang W; Huang Y ACS Appl Mater Interfaces; 2020 Nov; 12(47):52779-52787. PubMed ID: 33170626 [TBL] [Abstract][Full Text] [Related]
10. Keggin-Type PMo Dong G; Xia D; Yang Y; Shenga L; Ye T; Fan R ACS Appl Mater Interfaces; 2017 Jan; 9(3):2378-2386. PubMed ID: 28058832 [TBL] [Abstract][Full Text] [Related]
11. Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. Hu M; Wu X; Tan WL; Tan B; Scully AD; Ding L; Zhou C; Xiong Y; Huang F; Simonov AN; Bach U; Cheng YB; Wang S; Lu J ACS Appl Mater Interfaces; 2020 Feb; 12(7):8260-8270. PubMed ID: 31992043 [TBL] [Abstract][Full Text] [Related]
12. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells. Wang S; Sun W; Zhang M; Yan H; Hua G; Li Z; He R; Zeng W; Lan Z; Wu J RSC Adv; 2020 Oct; 10(64):38736-38745. PubMed ID: 35518393 [TBL] [Abstract][Full Text] [Related]
13. Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD Precursor Solution. Taherianfard H; Kim GW; Ebadi F; Abzieher T; Choi K; Paetzold UW; Richards BS; Alrhman Eliwi A; Tajabadi F; Taghavinia N; Malekshahi Byranvand M ACS Appl Mater Interfaces; 2019 Nov; 11(47):44802-44810. PubMed ID: 31670936 [TBL] [Abstract][Full Text] [Related]
14. Spiro-OMeTAD-Based Hole Transport Layer Engineering toward Stable Perovskite Solar Cells. Shen Y; Deng K; Li L Small Methods; 2022 Nov; 6(11):e2200757. PubMed ID: 36202752 [TBL] [Abstract][Full Text] [Related]
15. A Copper Coordination Polymer with Matching Energy Level for Modifying Hole Transport Layers to Improve the Performance of Perovskite Solar Cells. Qiu L; Zheng X; Yang Y; Dong Y; Dong G; Xia D; Liu X; Wu Q; Fan R ChemSusChem; 2019 Jun; 12(12):2763-2772. PubMed ID: 31168943 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient and durable planar carbon-based perovskite solar cells enabled by polystyrene modified hole-transporting layers. Zhang H; Song Y; Sun Y; Huang S; Cao Y J Colloid Interface Sci; 2023 Dec; 652(Pt A):463-469. PubMed ID: 37604057 [TBL] [Abstract][Full Text] [Related]
17. A Low-Cost and Lithium-Free Hole Transport Layer for Efficient and Stable Normal Perovskite Solar Cells. Tzoganakis N; Tsikritzis D; Chatzimanolis K; Zhuang X; Kymakis E Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903761 [TBL] [Abstract][Full Text] [Related]
18. Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. Kim GW; Kang G; Malekshahi Byranvand M; Lee GY; Park T ACS Appl Mater Interfaces; 2017 Aug; 9(33):27720-27726. PubMed ID: 28762266 [TBL] [Abstract][Full Text] [Related]
19. Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells. Wang S; Wu T; Guo J; Zhao R; Hua Y; Zhao Y ACS Cent Sci; 2024 Jul; 10(7):1383-1395. PubMed ID: 39071056 [TBL] [Abstract][Full Text] [Related]
20. Iodonium Initiators: Paving the Air-free Oxidation of Spiro-OMeTAD for Efficient and Stable Perovskite Solar Cells. Yang H; Xu T; Chen W; Wu Y; Guo X; Shen Y; Ding C; Chen X; Chen H; Ding J; Wu X; Zeng G; Zhang Z; Li Y; Li Y Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316183. PubMed ID: 38063461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]