These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34982077)

  • 1. Nonlinearity encoding to improve extrapolation capabilities for unobserved physical states.
    Na GS; Jang S; Chang H
    Phys Chem Chem Phys; 2022 Jan; 24(3):1300-1304. PubMed ID: 34982077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits of Prediction for Machine Learning in Drug Discovery.
    von Korff M; Sander T
    Front Pharmacol; 2022; 13():832120. PubMed ID: 35359835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems.
    Patel D; Ott E
    Chaos; 2023 Feb; 33(2):023143. PubMed ID: 36859201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.
    Shahnazi R
    ISA Trans; 2015 Jan; 54():39-51. PubMed ID: 25104646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grading amino acid properties increased accuracies of single point mutation on protein stability prediction.
    Liu J; Kang X
    BMC Bioinformatics; 2012 Mar; 13():44. PubMed ID: 22435732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring input nonlinearities in neural encoding models.
    Ahrens MB; Paninski L; Sahani M
    Network; 2008; 19(1):35-67. PubMed ID: 18300178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling deeper learning on big data for materials informatics applications.
    Jha D; Gupta V; Ward L; Yang Z; Wolverton C; Foster I; Liao WK; Choudhary A; Agrawal A
    Sci Rep; 2021 Feb; 11(1):4244. PubMed ID: 33608599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending machine learning classification capabilities with histogram reweighting.
    Bachtis D; Aarts G; Lucini B
    Phys Rev E; 2020 Sep; 102(3-1):033303. PubMed ID: 33075969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
    Wang H; Zhang W; Sun F; Zhang W
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing different nonlinearities in readout systems for optical neuromorphic computing networks.
    Ma C; Lambrecht J; Laporte F; Yin X; Dambre J; Bienstman P
    Sci Rep; 2021 Dec; 11(1):24152. PubMed ID: 34921207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Modelling by Machine Learning Corrections of Analytical Model Predictions towards High-Fidelity Simulation Solutions.
    Bock FE; Keller S; Huber N; Klusemann B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven machine learning model for the prediction of oxygen vacancy formation energy of metal oxide materials.
    Wan Z; Wang QD; Liu D; Liang J
    Phys Chem Chem Phys; 2021 Jul; 23(29):15675-15684. PubMed ID: 34269780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.
    Clark DP; Schwartz FR; Marin D; Ramirez-Giraldo JC; Badea CT
    Med Phys; 2020 Sep; 47(9):4150-4163. PubMed ID: 32531114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks.
    Hasibi R; Michoel T
    BMC Bioinformatics; 2021 Oct; 22(1):525. PubMed ID: 34706640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algebraic graph-assisted bidirectional transformers for molecular property prediction.
    Chen D; Gao K; Nguyen DD; Chen X; Jiang Y; Wei GW; Pan F
    Nat Commun; 2021 Jun; 12(1):3521. PubMed ID: 34112777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure prediction of materials with high symmetry using differential evolution.
    Yang W; Dilanga Siriwardane EM; Dong R; Li Y; Hu J
    J Phys Condens Matter; 2021 Aug; 33(45):. PubMed ID: 34388740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Einstein-Roscoe regression for the slag viscosity prediction problem in steelmaking.
    Saigo H; Kc DB; Saito N
    Sci Rep; 2022 Apr; 12(1):6541. PubMed ID: 35449168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale prediction of functional self-assembled materials using machine learning: high-performance surfactant molecules.
    Inokuchi T; Li N; Morohoshi K; Arai N
    Nanoscale; 2018 Aug; 10(34):16013-16021. PubMed ID: 30105348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.