These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
845 related articles for article (PubMed ID: 34982091)
1. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite. Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091 [TBL] [Abstract][Full Text] [Related]
2. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
3. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
4. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
5. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Li Z; Liu L; Chen Y Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional printing of cell-laden bioink for blood vessel tissue engineering: influence of process parameters and components on cell viability. Chen C; Zhan C; Huang X; Zhang S; Chen J J Biomater Sci Polym Ed; 2023 Dec; 34(17):2411-2437. PubMed ID: 37725406 [TBL] [Abstract][Full Text] [Related]
7. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels. Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
9. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
10. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
11. Digital Light Processing 3D Printing of Tough Supramolecular Hydrogels with Sophisticated Architectures as Impact-Absorption Elements. Dong M; Han Y; Hao XP; Yu HC; Yin J; Du M; Zheng Q; Wu ZL Adv Mater; 2022 Aug; 34(34):e2204333. PubMed ID: 35763430 [TBL] [Abstract][Full Text] [Related]
12. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System. Zhou Y; Yue Z; Chen Z; Wallace G Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357 [TBL] [Abstract][Full Text] [Related]
13. Embedded Bioprinting of Tissue-like Structures Using κ-Carrageenan Sub-Microgel Medium. Zhang H; Zhu T; Luo Y; Xu R; Li G; Hu Z; Cao X; Yao J; Chen Y; Zhu Y; Wu K J Vis Exp; 2024 May; (207):. PubMed ID: 38767380 [TBL] [Abstract][Full Text] [Related]
14. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
15. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures. Hong S; Sycks D; Chan HF; Lin S; Lopez GP; Guilak F; Leong KW; Zhao X Adv Mater; 2015 Jul; 27(27):4034. PubMed ID: 26172844 [TBL] [Abstract][Full Text] [Related]
17. Extrusion-based 3D printing of photo-crosslinkable gelatin and κ-carrageenan hydrogel blends for adipose tissue regeneration. Tytgat L; Van Damme L; Ortega Arevalo MDP; Declercq H; Thienpont H; Otteveare H; Blondeel P; Dubruel P; Van Vlierberghe S Int J Biol Macromol; 2019 Nov; 140():929-938. PubMed ID: 31422191 [TBL] [Abstract][Full Text] [Related]
18. Photo-steered rapid and multimodal locomotion of 3D-printed tough hydrogel robots. Dong M; Liu W; Dai CF; Jiao D; Zhu QL; Hong W; Yin J; Zheng Q; Wu ZL Mater Horiz; 2024 May; 11(9):2143-2152. PubMed ID: 38376773 [TBL] [Abstract][Full Text] [Related]
19. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983 [TBL] [Abstract][Full Text] [Related]
20. 3D-Printed Hydrogels with High-Strength and Anisotropy Mediated by Chain Rigidity. Kong D; Li Y; Yang B; Pang Y; Yuan H; Du C; Tan Y Small; 2024 Nov; 20(44):e2403052. PubMed ID: 38970551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]