These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34982392)

  • 1. A novel method for residual life assessment of used parts: a case study of used lathe spindles.
    Liu D; Liu W; Xu S; Jiang X; Li S; Wang Z
    Environ Sci Pollut Res Int; 2022 Jan; ():. PubMed ID: 34982392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review.
    Zhang X; Tang Y; Zhang H; Jiang Z; Cai W
    Sci Total Environ; 2021 Apr; 764():142922. PubMed ID: 33131872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The promotion and application of green remanufacturing: a case study in a machine tool plant.
    Song B; Jiang X; Wang S; Liu Q; Yu T
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40870-40885. PubMed ID: 36622588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on the Evolution Law Physical Short Fatigue Crack and Tip Deformation Fields during Crack Closure Process of the Q&P Steel.
    Shang H; Lin Z; Gao H; Shan X; Zhan J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size.
    Wang Q; Zhang W; Jiang S
    Materials (Basel); 2015 Oct; 8(10):7145-7160. PubMed ID: 28793625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on Damage Accumulation and Life Prediction with Loads below Fatigue Limit Based on a Modified Nonlinear Model.
    Zhang J; Fu X; Lin J; Liu Z; Liu N; Wu B
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30453480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
    Wang H; Zhang W; Sun F; Zhang W
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The remanufacturing evaluation for feasibility and comprehensive benefit of retired grinding machine.
    Ling T; He Y
    PLoS One; 2020; 15(6):e0234603. PubMed ID: 32555621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior.
    Liu X; Liu J; Zuo Z; Zhang H
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30836696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology for Evaluation of Residual Stress Effect on Small Corner-Crack Initiation and Growth.
    Kim J; Kang JW; Lee DE; Kim DY
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31505729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fatigue Life Prediction Method Based on Strain Intensity Factor.
    Zhang W; Liu H; Wang Q; He J
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FCG Modelling Considering the Combined Effects of Cyclic Plastic Deformation and Growth of Micro-Voids.
    Sérgio ER; Antunes FV; Borges MF; Neto DM
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.
    Zhang W; Bao Z; Jiang S; He J
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Life Prediction of Notched Details Using SWT Model and LEFM-Based Approach.
    Hao R; Wen Z; Xin H; Lin W
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A remanufacturing supply chain network with differentiated new and remanufactured products considering consumer preference, production capacity constraint and government regulation.
    Zhang X; Zhou G; Cao J; Lu J
    PLoS One; 2023; 18(8):e0289349. PubMed ID: 37561709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Failure Analysis and Fatigue Life Prediction of Shield Machine Cutterhead.
    Li J; Zhang Z; Liu C; Su K; Guo J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crankshaft High-Cycle Bending Fatigue Experiment Design Method Based on Unscented Kalman Filtering and the Theory of Crack Propagation.
    Que T; Jiang D; Sun S; Gong X
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.