These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34982996)

  • 21. Thermally modified bamboo-eggshell adsorbent for phosphate recovery and its sustainable application as fertilizer.
    Sarker P; Liu X; Hata N; Takeshita H; Miyamura H; Maruo M
    Environ Res; 2023 Aug; 231(Pt 1):115992. PubMed ID: 37121352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on an effective industrial waste-based adsorbent for the adsorptive removal of phosphorus from wastewater: equilibrium and kinetics studies.
    Xie R; Chen Y; Cheng T; Lai Y; Jiang W; Yang Z
    Water Sci Technol; 2016; 73(8):1891-900. PubMed ID: 27120644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of chromium (VI) from aqueous solutions and ANN modelling.
    Nag S; Mondal A; Bar N; Das SK
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18817-18835. PubMed ID: 28623504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal and recovery of phosphate by modified oyster shell and its fertilizer application.
    Li P; Li J; Chen W; Guan X; Tang B; Bin L; Huang S
    Sci Total Environ; 2024 Jan; 908():168432. PubMed ID: 37951256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times.
    He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X
    Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the removal efficiency of copper ions in wastewater using calcined waste eggshells as natural adsorbents.
    Chou MY; Lee TA; Lin YS; Hsu SY; Wang MF; Li PH; Huang PH; Lu WC; Ho JH
    Sci Rep; 2023 Jan; 13(1):437. PubMed ID: 36624146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized preparation of gangue waste-based geopolymer adsorbent based on improved response surface methodology for Cd(II) removal from wastewater.
    Dong C; Zhou N; Zhang J; Lai W; Xu J; Chen J; Yu R; Che Y
    Environ Res; 2023 Mar; 221():115246. PubMed ID: 36657595
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation.
    Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A
    Environ Sci Pollut Res Int; 2021 Oct; 28(37):51808-51825. PubMed ID: 33990925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions.
    Mohamed A; Osman TA; Toprak MS; Muhammed M; Uheida A
    Chemosphere; 2017 Aug; 180():108-116. PubMed ID: 28395148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution.
    Thagira Banu H; Karthikeyan P; Meenakshi S
    Int J Biol Macromol; 2018 Jun; 112():284-293. PubMed ID: 29378275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse.
    Acosta-Herrera AA; Hernández-Montoya V; Castillo-Borja F; Pérez-Cruz MA; Montes-Morán MA; Cervantes FJ
    J Environ Manage; 2021 Sep; 293():112877. PubMed ID: 34098353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of agricultural wastewater pollutants by integrating two waste materials, fish scales and neem leaves, as novel potential adsorbent.
    Preetham V; Vengala J
    Water Sci Technol; 2021 Nov; 84(10-11):2980-2996. PubMed ID: 34850708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ternary polymer composites of macroporous adsorbents on adsorption properties for heavy metal removal from aqueous solution.
    Charoenchai M; Tangbunsuk S
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):84006-84018. PubMed ID: 35776300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies.
    Jin T; Yuan W; Xue Y; Wei H; Zhang C; Li K
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5238-5248. PubMed ID: 28004365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surveying the efficiency of Platanus orientalis bark as biosorbent for Ni and Cr(VI) removal from plating wastewater as a real sample.
    Akar S; Lorestani B; Sobhanardakani S; Cheraghi M; Moradi O
    Environ Monit Assess; 2019 May; 191(6):373. PubMed ID: 31102030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recovering heavy metals from electroplating wastewater and their conversion into Zn
    Fu D; Kurniawan TA; Avtar R; Xu P; Othman MHD
    Chemosphere; 2021 May; 271():129861. PubMed ID: 33736203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus removal from aqueous solution using modified walnut and almond wooden shell and recycling as soil amendment.
    Faraji B; Zarabi M; Kolahchi Z
    Environ Monit Assess; 2020 May; 192(6):373. PubMed ID: 32418016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of antimony from model solutions, mine effluent, and textile industry wastewater with Mg-rich mineral adsorbents.
    Runtti H; Luukkonen T; Tuomikoski S; Hu T; Lassi U; Kangas T
    Environ Sci Pollut Res Int; 2023 Feb; 30(6):14139-14154. PubMed ID: 36149556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption Characteristics of Phosphate Based on Al-Doped Waste Ceramsite: Batch and Column Experiments.
    Ma Y; Zhu J; Yu J; Fu Y; Gong C; Huang X
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Methylene blue removal using raw and modified biomass Plumeria alba (white frangipani) in batch mode: isotherm, kinetics, and thermodynamic studies.
    Deka J; Das H; Singh A; Barman P; Devi A; Bhattacharyya KG
    Environ Monit Assess; 2022 Oct; 195(1):26. PubMed ID: 36278964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.