These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transformation and differential abundance analysis of microbiome data incorporating phylogeny. Zhou C; Zhao H; Wang T Bioinformatics; 2021 Dec; 37(24):4652-4660. PubMed ID: 34302462 [TBL] [Abstract][Full Text] [Related]
3. Learning a mixture of microbial networks using minorization-maximization. Tavakoli S; Yooseph S Bioinformatics; 2019 Jul; 35(14):i23-i30. PubMed ID: 31510709 [TBL] [Abstract][Full Text] [Related]
4. MPLasso: Inferring microbial association networks using prior microbial knowledge. Lo C; Marculescu R PLoS Comput Biol; 2017 Dec; 13(12):e1005915. PubMed ID: 29281638 [TBL] [Abstract][Full Text] [Related]
5. NetCoMi: network construction and comparison for microbiome data in R. Peschel S; Müller CL; von Mutius E; Boulesteix AL; Depner M Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33264391 [TBL] [Abstract][Full Text] [Related]
6. Direct interaction network inference for compositional data via codaloss. Chen L; He S; Zhai Y; Deng M J Bioinform Comput Biol; 2020 Dec; 18(6):2050037. PubMed ID: 33106076 [TBL] [Abstract][Full Text] [Related]
7. MDiNE: a model to estimate differential co-occurrence networks in microbiome studies. McGregor K; Labbe A; Greenwood CMT Bioinformatics; 2020 Mar; 36(6):1840-1847. PubMed ID: 31697315 [TBL] [Abstract][Full Text] [Related]
8. Batch effects correction for microbiome data with Dirichlet-multinomial regression. Dai Z; Wong SH; Yu J; Wei Y Bioinformatics; 2019 Mar; 35(5):807-814. PubMed ID: 30816927 [TBL] [Abstract][Full Text] [Related]
9. WSGMB: weight signed graph neural network for microbial biomarker identification. Pan S; Jiang X; Zhang K Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38084923 [TBL] [Abstract][Full Text] [Related]
10. Estimating and testing the microbial causal mediation effect with high-dimensional and compositional microbiome data. Wang C; Hu J; Blaser MJ; Li H Bioinformatics; 2020 Jan; 36(2):347-355. PubMed ID: 31329243 [TBL] [Abstract][Full Text] [Related]
11. TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification. Sayyari E; Kawas B; Mirarab S Bioinformatics; 2019 Jul; 35(14):i31-i40. PubMed ID: 31510701 [TBL] [Abstract][Full Text] [Related]
12. phylaGAN: data augmentation through conditional GANs and autoencoders for improving disease prediction accuracy using microbiome data. Sharma D; Lou W; Xu W Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38569898 [TBL] [Abstract][Full Text] [Related]
13. Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model. Hosoda S; Fukunaga T; Hamada M Bioinformatics; 2021 Jul; 37(Suppl_1):i16-i24. PubMed ID: 34252954 [TBL] [Abstract][Full Text] [Related]
14. Statistical Methods for Microbiome Compositional Data Network Inference: A Survey. Chen L; Wan H; He Q; He S; Deng M J Comput Biol; 2022 Jul; 29(7):704-723. PubMed ID: 35404093 [TBL] [Abstract][Full Text] [Related]
15. Predicting microbiomes through a deep latent space. García-Jiménez B; Muñoz J; Cabello S; Medina J; Wilkinson MD Bioinformatics; 2021 Jun; 37(10):1444-1451. PubMed ID: 33289510 [TBL] [Abstract][Full Text] [Related]
16. TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction. Sharma D; Paterson AD; Xu W Bioinformatics; 2020 Nov; 36(17):4544-4550. PubMed ID: 32449747 [TBL] [Abstract][Full Text] [Related]
17. Compositional zero-inflated network estimation for microbiome data. Ha MJ; Kim J; Galloway-Peña J; Do KA; Peterson CB BMC Bioinformatics; 2020 Dec; 21(Suppl 21):581. PubMed ID: 33371887 [TBL] [Abstract][Full Text] [Related]
18. A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping. Koh H; Blaser MJ; Li H Microbiome; 2017 Apr; 5(1):45. PubMed ID: 28438217 [TBL] [Abstract][Full Text] [Related]