These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34983328)

  • 1. Astragalus Total Saponins Ameliorate Peritoneal Fibrosis by Promoting Mitochondrial Synthesis and Inhibiting Apoptosis.
    Li ZH; Xu R; Shi J; Yu MS; Zhong Y; He WM; Cao LP; Sheng MX
    Am J Chin Med; 2022; 50(1):261-274. PubMed ID: 34983328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astragaloside IV ameliorates peritoneal fibrosis by promoting PGC-1α to reduce apoptosis in vitro and in vivo.
    Xie M; Xia B; Xiao L; Yang D; Li Z; Wang H; Wang X; Zhang X; Peng Q
    J Cell Mol Med; 2023 Oct; 27(19):2945-2955. PubMed ID: 37494130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the RAS contributes to peritoneal fibrosis via dysregulation of low-density lipoprotein receptor.
    Liu J; Feng Y; Li N; Shao QY; Zhang QY; Sun C; Xu PF; Jiang CM
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F273-F284. PubMed ID: 33427062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Astragalus membranaceus inhibits peritoneal fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in rats submitted to peritoneal dialysis.
    Li Z; Zhang L; He W; Zhu C; Yang J; Sheng M
    Int J Mol Sci; 2014 Jul; 15(7):12959-71. PubMed ID: 25054320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids.
    Zhu W; Zhang X; Gao K; Wang X
    Mol Med Rep; 2019 Oct; 20(4):3829-3839. PubMed ID: 31485615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin.
    Yu M; Shi J; Sheng M; Gao K; Zhang L; Liu L; Zhu Y
    Cell Physiol Biochem; 2018; 51(6):2794-2813. PubMed ID: 30562743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of macrophage-derived Exosomes in reversing peritoneal fibrosis: Insights from Astragaloside IV.
    Shan Y; Yu M; Dai H; Zhu X; Wang F; You Y; Cao H; Sheng L; Zhao J; Tang L; Shi J; Sheng M
    Phytomedicine; 2024 Jul; 129():155683. PubMed ID: 38701543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HL156A, a novel AMP-activated protein kinase activator, is protective against peritoneal fibrosis in an in vivo and in vitro model of peritoneal fibrosis.
    Ju KD; Kim HJ; Tsogbadrakh B; Lee J; Ryu H; Cho EJ; Hwang YH; Kim K; Yang J; Ahn C; Oh KH
    Am J Physiol Renal Physiol; 2016 Mar; 310(5):F342-50. PubMed ID: 26661649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis.
    Zhao JL; Zhang T; Shao X; Zhu JJ; Guo MZ
    BMC Complement Altern Med; 2019 Oct; 19(1):280. PubMed ID: 31647008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-fibrotic effects of valproic acid in experimental peritoneal fibrosis.
    Costalonga EC; de Freitas LJ; Aragone DDSP; Silva FMO; Noronha IL
    PLoS One; 2017; 12(9):e0184302. PubMed ID: 28873458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effect of Cyclo(His-Pro) on peritoneal fibrosis through regulation of HDAC3 expression.
    Kim JE; Han D; Kim KH; Seo A; Moon JJ; Jeong JS; Kim JH; Kang E; Bae E; Kim YC; Lee JW; Cha RH; Kim DK; Oh KH; Kim YS; Jung HY; Yang SH
    FASEB J; 2024 Jul; 38(13):e23819. PubMed ID: 38984942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-21 contributes to high glucose-induced fibrosis in peritoneal mesothelial cells in rat models by activation of the Ras-MAPK signaling pathway via Sprouty-1.
    Gao Q; Xu L; Yang Q; Guan TJ
    J Cell Physiol; 2019 May; 234(5):5915-5925. PubMed ID: 30515805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventive effect of culture supernatant of epithelial-like peritoneal mesothelial cells on peritoneal fibrosis.
    Takahashi K; Tsuji K; Nakanoh H; Fukushima K; Kitamura S; Wada J
    Perit Dial Int; 2024 May; 44(3):211-215. PubMed ID: 38017611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of infiltrating macrophages in high glucose-induced peritoneal fibrosis in rats.
    Hu W; Jiang Z; Zhang Y; Liu Q; Fan J; Luo N; Dong X; Yu X
    Mol Med Rep; 2012 Jul; 6(1):93-9. PubMed ID: 22552745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcitriol decreases TGF-β1 and angiotensin II production and protects against chlorhexide digluconate-induced liver peritoneal fibrosis in rats.
    Lee CJ; Subeq YM; Lee RP; Liou HH; Hsu BG
    Cytokine; 2014 Jan; 65(1):105-18. PubMed ID: 24210651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic anti-liver fibrosis actions of total astragalus saponins and glycyrrhizic acid via TGF-β1/Smads signaling pathway modulation.
    Zhou Y; Tong X; Ren S; Wang X; Chen J; Mu Y; Sun M; Chen G; Zhang H; Liu P
    J Ethnopharmacol; 2016 Aug; 190():83-90. PubMed ID: 27282665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trehalose ameliorates peritoneal fibrosis by promoting Snail degradation and inhibiting mesothelial-to-mesenchymal transition in mesothelial cells.
    Miyake T; Sakai N; Tamai A; Sato K; Kamikawa Y; Miyagawa T; Ogura H; Yamamura Y; Oshima M; Nakagawa S; Sagara A; Shinozaki Y; Toyama T; Kitajima S; Hara A; Iwata Y; Shimizu M; Furuichi K; Kaneko S; Wada T
    Sci Rep; 2020 Aug; 10(1):14292. PubMed ID: 32868830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic effect of 1,25(OH)2-VitaminD3 on fibrosis and angiogenesis of peritoneum induced by chlorhexidine.
    Da J; Yang Y; Dong R; Shen Y; Zha Y
    Biomed Pharmacother; 2020 Sep; 129():110431. PubMed ID: 32585450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases.
    Xiang S; Li M; Xie X; Xie Z; Zhou Q; Tian Y; Lin W; Zhang X; Jiang H; Shou Z; Chen J
    FEBS J; 2016 Jun; 283(12):2309-25. PubMed ID: 27093550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc supplementation inhibits the high glucose‑induced EMT of peritoneal mesothelial cells by activating the Nrf2 antioxidant pathway.
    Gao L; Fan Y; Zhang X; Yang L; Huang W; Hang T; Li M; Du S; Ma J
    Mol Med Rep; 2019 Jul; 20(1):655-663. PubMed ID: 31115566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.