These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34983351)

  • 41. Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data.
    Kasaraneni PP; Venkata Pavan Kumar Y; Moganti GLK; Kannan R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36502025
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis.
    Fritz RL; Wilson M; Dermody G; Schmitter-Edgecombe M; Cook DJ
    J Med Internet Res; 2020 Nov; 22(11):e23943. PubMed ID: 33105099
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Convolutional Neural Network Bootstrapped by Dynamic Segmentation and Stigmergy-Based Encoding for Real-Time Human Activity Recognition in Smart Homes.
    Najeh H; Lohr C; Leduc B
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects.
    Khannouz M; Glatard T
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating machine learning models to classify occupants' perceptions of their indoor environment and sleep quality from indoor air quality.
    Fritz H; Tang M; Kinney K; Nagy Z
    J Air Waste Manag Assoc; 2022 Dec; 72(12):1381-1397. PubMed ID: 35939653
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study.
    Serviá L; Montserrat N; Badia M; Llompart-Pou JA; Barea-Mendoza JA; Chico-Fernández M; Sánchez-Casado M; Jiménez JM; Mayor DM; Trujillano J
    BMC Med Res Methodol; 2020 Oct; 20(1):262. PubMed ID: 33081694
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human Activity Recognition Supported on Indoor Localization: A Systematic Review.
    Cerón J; López DM
    Stud Health Technol Inform; 2018; 249():93-101. PubMed ID: 29866962
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning Setting-Generalized Activity Models for Smart Spaces.
    Cook DJ
    IEEE Intell Syst; 2010 Sep; 2010(99):1. PubMed ID: 21461133
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Smart-Sleeve: A Wearable Textile Pressure Sensor Array for Human Activity Recognition.
    Xu G; Wan Q; Deng W; Guo T; Cheng J
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors.
    Cippitelli E; Gasparrini S; Gambi E; Spinsante S
    Comput Intell Neurosci; 2016; 2016():4351435. PubMed ID: 27069469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Automated assessment of cognitive health using smart home technologies.
    Dawadi PN; Cook DJ; Schmitter-Edgecombe M; Parsey C
    Technol Health Care; 2013; 21(4):323-43. PubMed ID: 23949177
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.
    Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Comprehensive Analysis on Wearable Acceleration Sensors in Human Activity Recognition.
    Janidarmian M; Roshan Fekr A; Radecka K; Zilic Z
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28272362
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Semi-Automatic Annotation Approach for Human Activity Recognition.
    Bota P; Silva J; Folgado D; Gamboa H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of Neurological Outcomes in Out-of-hospital Cardiac Arrest Survivors Immediately after Return of Spontaneous Circulation: Ensemble Technique with Four Machine Learning Models.
    Heo JH; Kim T; Shin J; Suh GJ; Kim J; Jung YS; Park SM; Kim S;
    J Korean Med Sci; 2021 Jul; 36(28):e187. PubMed ID: 34282605
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of mortality in Intensive Care Units: a multivariate feature selection.
    Monteiro F; Meloni F; Baranauskas JA; Macedo AA
    J Biomed Inform; 2020 Jul; 107():103456. PubMed ID: 32454242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
    Thotad PN; Bharamagoudar GR; Anami BS
    Diabetes Metab Syndr; 2023 Jan; 17(1):102690. PubMed ID: 36527769
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Review on Human Action Recognition in Smart Living: Sensing Technology, Multimodality, Real-Time Processing, Interoperability, and Resource-Constrained Processing.
    Diraco G; Rescio G; Siciliano P; Leone A
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.