These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34983372)

  • 1. Machine learning-based predictions of dietary restriction associations across ageing-related genes.
    Vega Magdaleno GD; Bespalov V; Zheng Y; Freitas AA; de Magalhaes JP
    BMC Bioinformatics; 2022 Jan; 23(1):10. PubMed ID: 34983372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying longevity associated genes by integrating gene expression and curated annotations.
    Townes FW; Carr K; Miller JW
    PLoS Comput Biol; 2020 Nov; 16(11):e1008429. PubMed ID: 33253142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting lifespan-extending chemical compounds for
    Ribeiro C; Farmer CK; de Magalhães JP; Freitas AA
    Aging (Albany NY); 2023 Jul; 15(13):6073-6099. PubMed ID: 37450404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of Gene Ontology terms and KEGG pathways for analysis and prediction of oncogenes.
    Xing Z; Chu C; Chen L; Kong X
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt B):2725-34. PubMed ID: 26801878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of supervised machine learning applied to ageing research.
    Fabris F; Magalhães JP; Freitas AA
    Biogerontology; 2017 Apr; 18(2):171-188. PubMed ID: 28265788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning approach to gene essentiality prediction: a review.
    Aromolaran O; Aromolaran D; Isewon I; Oyelade J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33842944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New KEGG pathway-based interpretable features for classifying ageing-related mouse proteins.
    Fabris F; Freitas AA
    Bioinformatics; 2016 Oct; 32(19):2988-95. PubMed ID: 27318209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene prediction of aging-related diseases based on DNN and Mashup.
    Ye J; Wang S; Yang X; Tang X
    BMC Bioinformatics; 2021 Dec; 22(1):597. PubMed ID: 34920719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empowering the discovery of novel target-disease associations via machine learning approaches in the open targets platform.
    Han Y; Klinger K; Rajpal DK; Zhu C; Teeple E
    BMC Bioinformatics; 2022 Jun; 23(1):232. PubMed ID: 35710324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Extensive Empirical Comparison of Probabilistic Hierarchical Classifiers in Datasets of Ageing-Related Genes.
    Fabris F; Freitas AA; Tullet JM
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1045-1058. PubMed ID: 26661786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The road ahead of dietary restriction on anti-aging: focusing on personalized nutrition.
    Duan H; Li J; Yu L; Fan L
    Crit Rev Food Sci Nutr; 2024; 64(4):891-908. PubMed ID: 35950606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.
    Wuttke D; Connor R; Vora C; Craig T; Li Y; Wood S; Vasieva O; Shmookler Reis R; Tang F; de Magalhães JP
    PLoS Genet; 2012; 8(8):e1002834. PubMed ID: 22912585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the Pro-Longevity or Anti-Longevity Effect of Model Organism Genes with New Hierarchical Feature Selection Methods.
    Wan C; Freitas AA; de Magalhães JP
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):262-75. PubMed ID: 26357215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of infectious disease-associated host genes using machine learning techniques.
    Barman RK; Mukhopadhyay A; Maulik U; Das S
    BMC Bioinformatics; 2019 Dec; 20(1):736. PubMed ID: 31881961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the classification of neuropsychiatric conditions using gene ontology terms as features.
    Quinn TP; Lee SC; Venkatesh S; Nguyen T
    Am J Med Genet B Neuropsychiatr Genet; 2019 Oct; 180(7):508-518. PubMed ID: 31025483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy.
    Kim WK; Krumpelman C; Marcotte EM
    Genome Biol; 2008; 9 Suppl 1(Suppl 1):S5. PubMed ID: 18613949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein-protein interaction associated functions based on gene ontology and KEGG pathway.
    Yang L; Zhang YH; Huang F; Li Z; Huang T; Cai YD
    Front Genet; 2022; 13():1011659. PubMed ID: 36171880
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.