BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34983380)

  • 1. Inferring the genetic responses to acute drought stress across an ecological gradient.
    Devitt JK; Chung A; Schenk JJ
    BMC Genomics; 2022 Jan; 23(1):3. PubMed ID: 34983380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo assembly of red clover transcriptome based on RNA-Seq data provides insight into drought response, gene discovery and marker identification.
    Yates SA; Swain MT; Hegarty MJ; Chernukin I; Lowe M; Allison GG; Ruttink T; Abberton MT; Jenkins G; Skøt L
    BMC Genomics; 2014 Jun; 15(1):453. PubMed ID: 24912738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide transcriptional and physiological responses to drought stress in leaves and roots of two willow genotypes.
    Pucholt P; Sjödin P; Weih M; Rönnberg-Wästljung AC; Berlin S
    BMC Plant Biol; 2015 Oct; 15():244. PubMed ID: 26458893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads.
    Liu T; Liu Y; Fu G; Chen J; Lv T; Su D; Wang Y; Hu X; Su X; Harris AJ
    J Plant Physiol; 2022 Apr; 271():153630. PubMed ID: 35193087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative RNA-seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under short- and long-term water deficits.
    Morgil H; Tardu M; Cevahir G; Kavakli İH
    Funct Integr Genomics; 2019 Sep; 19(5):715-727. PubMed ID: 31001704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress.
    Simopoulos CMA; MacLeod MJR; Irani S; Sung WWL; Champigny MJ; Summers PS; Golding GB; Weretilnyk EA
    BMC Genomics; 2020 Jun; 21(1):396. PubMed ID: 32513102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated mechanisms of leaves and roots in response to drought stress underlying full-length transcriptome profiling in Vicia sativa L.
    Min X; Lin X; Ndayambaza B; Wang Y; Liu W
    BMC Plant Biol; 2020 Apr; 20(1):165. PubMed ID: 32293274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes.
    Cohen D; Bogeat-Triboulot MB; Tisserant E; Balzergue S; Martin-Magniette ML; Lelandais G; Ningre N; Renou JP; Tamby JP; Le Thiec D; Hummel I
    BMC Genomics; 2010 Nov; 11():630. PubMed ID: 21073700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions.
    Kondrák M; Marincs F; Antal F; Juhász Z; Bánfalvi Z
    BMC Plant Biol; 2012 May; 12():74. PubMed ID: 22646706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption.
    Carvalho HH; Brustolini OJ; Pimenta MR; Mendes GC; Gouveia BC; Silva PA; Silva JC; Mota CS; Soares-Ramos JR; Fontes EP
    PLoS One; 2014; 9(1):e86661. PubMed ID: 24489761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and transcriptomic responses of reproductive stage soybean to drought stress.
    Xu C; Xia C; Xia Z; Zhou X; Huang J; Huang Z; Liu Y; Jiang Y; Casteel S; Zhang C
    Plant Cell Rep; 2018 Dec; 37(12):1611-1624. PubMed ID: 30099610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering.
    Zhang JY; Cruz DE Carvalho MH; Torres-Jerez I; Kang Y; Allen SN; Huhman DV; Tang Y; Murray J; Sumner LW; Udvardi MK
    Plant Cell Environ; 2014 Nov; 37(11):2553-76. PubMed ID: 24661137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.
    Zhang C; Zhang L; Zhang S; Zhu S; Wu P; Chen Y; Li M; Jiang H; Wu G
    BMC Plant Biol; 2015 Jan; 15():17. PubMed ID: 25604012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species.
    Li MQ; Yang J; Wang X; Li DX; Zhang CB; Tian ZH; You MH; Bai SQ; Lin HH
    J Plant Physiol; 2020 Jul; 250():153183. PubMed ID: 32422512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Whole Transcriptome RNA-seq Data Reveals Many Alternative Splicing Events in Soybean Roots under Drought Stress Conditions.
    Song L; Pan Z; Chen L; Dai Y; Wan J; Ye H; Nguyen HT; Zhang G; Chen H
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33352659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional responses to drought stress in root and leaf of chickpea seedling.
    Wang X; Liu Y; Jia Y; Gu H; Ma H; Yu T; Zhang H; Chen Q; Ma L; Gu A; Zhang J; Shi S; Ma H
    Mol Biol Rep; 2012 Aug; 39(8):8147-58. PubMed ID: 22562393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct morpho-physiological and biochemical features of arid and hyper-arid ecotypes of Ziziphus nummularia under drought suggest its higher tolerance compared with semi-arid ecotype.
    Sivalingam PN; Mahajan MM; Satheesh V; Chauhan S; Changal H; Gurjar K; Singh D; Bhan C; Sivalingam A; Marathe A; Ram C; Dokka N; More TA; Padaria JC; Bhat KV; Mohapatra T
    Tree Physiol; 2021 Nov; 41(11):2063-2081. PubMed ID: 33929534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.