BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34983380)

  • 21. Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptional-level responses to both drought stress and re-watering treatment in tobacco.
    Chen Q; Li M; Zhang Z; Tie W; Chen X; Jin L; Zhai N; Zheng Q; Zhang J; Wang R; Xu G; Zhang H; Liu P; Zhou H
    BMC Genomics; 2017 Jan; 18(1):62. PubMed ID: 28068898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative analysis of two sister Erythrophleum species (Leguminosae) reveal contrasting transcriptome-wide responses to early drought stress.
    Neji M; Gorel A; Ojeda DI; Duminil J; Kastally C; Steppe K; Fayolle A; Hardy OJ
    Gene; 2019 Apr; 694():50-62. PubMed ID: 30716444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microarray analysis of differentially expressed mRNAs and miRNAs in young leaves of sorghum under dry-down conditions.
    Pasini L; Bergonti M; Fracasso A; Marocco A; Amaducci S
    J Plant Physiol; 2014 Apr; 171(7):537-48. PubMed ID: 24655390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Root system architecture, physiological analysis and dynamic transcriptomics unravel the drought-responsive traits in rice genotypes.
    Tiwari P; Srivastava D; Chauhan AS; Indoliya Y; Singh PK; Tiwari S; Fatima T; Mishra SK; Dwivedi S; Agarwal L; Singh PC; Asif MH; Tripathi RD; Shirke PA; Chakrabarty D; Chauhan PS; Nautiyal CS
    Ecotoxicol Environ Saf; 2021 Jan; 207():111252. PubMed ID: 32916530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice.
    Wang D; Pan Y; Zhao X; Zhu L; Fu B; Li Z
    BMC Genomics; 2011 Mar; 12():149. PubMed ID: 21406116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice.
    Chung PJ; Jung H; Jeong DH; Ha SH; Choi YD; Kim JK
    BMC Genomics; 2016 Aug; 17():563. PubMed ID: 27501838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage.
    Cheah BH; Nadarajah K; Divate MD; Wickneswari R
    BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptomic responses to drought stress in Polygonatum kingianum tuber.
    Qian H; Xu Z; Cong K; Zhu X; Zhang L; Wang J; Wei J; Ji P
    BMC Plant Biol; 2021 Nov; 21(1):537. PubMed ID: 34781887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64.
    Sharoni AM; Nuruzzaman M; Satoh K; Moumeni A; Attia K; Venuprasad R; Serraj R; Kumar A; Leung H; Islam AK; Kikuchi S
    Mol Genet Genomics; 2012 Jan; 287(1):1-19. PubMed ID: 22102215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative Transcriptomics and Co-Expression Networks Reveal Tissue- and Genotype-Specific Responses of
    Tarun JA; Mauleon R; Arbelaez JD; Catausan S; Dixit S; Kumar A; Brown P; Kohli A; Kretzschmar T
    Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress.
    Zhao X; Li C; Wan S; Zhang T; Yan C; Shan S
    Mol Biol Rep; 2018 Apr; 45(2):119-131. PubMed ID: 29330721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.
    Sapeta H; Lourenço T; Lorenz S; Grumaz C; Kirstahler P; Barros PM; Costa JM; Sohn K; Oliveira MM
    J Exp Bot; 2016 Feb; 67(3):845-60. PubMed ID: 26602946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of alfalfa (Medicago sativa L.) seedling transcriptomes reveals genotype-specific drought tolerance mechanisms.
    Ma Q; Xu X; Wang W; Zhao L; Ma D; Xie Y
    Plant Physiol Biochem; 2021 Sep; 166():203-214. PubMed ID: 34118683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes.
    Tripathi P; Rabara RC; Reese RN; Miller MA; Rohila JS; Subramanian S; Shen QJ; Morandi D; Bücking H; Shulaev V; Rushton PJ
    BMC Genomics; 2016 Feb; 17():102. PubMed ID: 26861168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Differentially Expressed Genes in Leaves vs. Roots Subjected to Drought Stress in Flax (
    Wang N; Qi F; Wang F; Lin Y; Xiaoyang C; Peng Z; Zhang B; Qi X; Deyholos MK; Zhang J
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. De novo assembly and analysis of the Pugionium cornutum (L.) Gaertn. transcriptome and identification of genes involved in the drought response.
    Wang P; Wang F; Yang J
    Gene; 2017 Aug; 626():290-297. PubMed ID: 28552570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs.
    Saminathan T; Alvarado A; Lopez C; Shinde S; Gajanayake B; Abburi VL; Vajja VG; Jagadeeswaran G; Raja Reddy K; Nimmakayala P; Reddy UK
    Funct Integr Genomics; 2019 Jan; 19(1):171-190. PubMed ID: 30244303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau.
    Yang Y; Li X; Kong X; Ma L; Hu X; Yang Y
    Funct Integr Genomics; 2015 May; 15(3):295-307. PubMed ID: 25471470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.